595 resultados para Actinoptychus senarius
Resumo:
In the first season of drilling, the Cape Roberts Project (CRP) recovered one drillcore (CRP-l) from Roberts Ridge in western McMurdo Sound, Ross Sea, Antarctica Diatom biostratigraphy places the upper six lithostratigraphic units (Units 1.1, 2.1, 2.2, 2.3, 3.1, and 4.1) of CRP-l (0.0 to 43.15 mbsf) within the Quaternary. Both non-marine and marine Quaternary diatoms occur in variable abundance in the Quaternary interval of CRP- 1 Biostratigraphic data resolve two Quaternary time slices or events within CRP-1. Marine diatom assemblages in Units 4.1 and 3.1 represent sedimentation within the diatom Actinocyclus ingens Zone (1.35 to 0.66 Ma). Further refinement of the age of Unit 3.l places deposition in the interval 1.15 to 0.75 Ma based on the common occurrence of Thalassiosira elliptipora and correlation to the Southern Ocean acme of this taxon The absence of ActiActinocyclus ingens and the presence ot Thalassiosira antarctica in Unit 2.2 require a younger zonal assignment for this interval, within the diatom Thalassiosira lentiginosa Zone (0.66 to 0.0 Ma). A new diatom species. Rouxia leventerae, is described from marine assemblages of Units 2.2, 2.3, 3.1, and 4.l. Lithostratigraphic Unit 3.1 (33.82 to 31.89 mbsf) is a bryozoan-dominated skeletal-carbonate facies. Low abundance of Fragilariopsis curta and Fragilariopsis cylindrus within this unit combined with the relatively high abundance of species associated with open water indicates deposition in waters that remained ice free for much or all of the year Diatom assemblages suggest carbonate deposition in Unit 3.1 is linked to a significant early Pleistocene event in McMurdo Sound, when elevated surface-water temperatures inhibited the formation of sea ice.
Resumo:
During Ocean Drilling Program (ODP) Leg 177, seven sites were drilled aligned on a transect across the Antarctic Circumpolar Current in the Atlantic sector of the Southern Ocean. The primary scientific objective of Leg 177 was the study of the Cenozoic paleoceanographic and paleoclimatic history of the southern high latitudes and its relationship with the Antarctic cryosphere development. Of special emphasis was the recovery of Pliocene-Pleistocene sections, allowing paleoceanographic studies at millennial or higher time resolution, and the establishment of refined biostratigraphic zonations tied to the geomagnetic polarity record and stable isotope records. At most sites, multiple holes were drilled to ensure complete recovery of the section. A description of the recovered sections and the construction of a multihole splice for the establishment of a continuous composite is presented in the Leg 177 Initial Reports volume for each of the sites (Gersonde, Hodell, Blum, et al., 1999). Here we present the relative abundance pattern and the stratigraphic ranges of diatom taxa encountered from shore-based light microscope studies completed on the Pliocene-Pleistocene sequences from six of the drilled sites (Sites 1089-1094). No shore-based diatom studies have been conducted on the Pliocene-Pleistocene sediments obtained at Site 1088, located on the northern crest of the Agulhas Ridge, because of the scattered occurrence and poor preservation of diatoms in these sections (Shipboard Scientific Party, 1999b). The data included in our report present the baseline of a diatom biostratigraphic study of Zielinski and Gersonde (2002), which (1) includes a refinement of the southern high-latitude Pliocene-Pleistocene diatom zonation, in particular for the middle and late Pleistocene, and (2) presents a biostratigraphic framework for the establishment of age models of the recovered sediment sections. Zielinski and Gersonde (2002) correlated the diatom ranges with the geomagnetic polarity record established shipboard (Sites 1090 and 1092) (Shipboard Scientific Party, 1999c, 1999d) and on shore (Sites 1089, 1091, 1093, and 1094) by Channell and Stoner (2002). The Pliocene-Pleistocene diatom zonation proposed by Zielinski and Gersonde (2002) relies on a diatom zonation from Gersonde and Bárcena (1998) for the northern belt of the Southern Ocean. Because of latitudinal differentiation of sea-surface temperature, nutrients, and salinity between Antarctic and Subantarctic/subtropical water masses, the Pliocene-Pleistocene stratigraphic marker diatoms are not uniformly distributed in the Southern Ocean (Fenner, 1991; Gersonde and Bárcena, 1998). As a consequence, Zielinski and Gersonde (2002) propose two diatom zonations for application in the Antarctic Zone south of the Polar Front (Southern Zonation, Sites 1094 and 1093) and the area encompassing the Polar Front Zone (PFZ) and the Subantarctic Zone (Northern Zonation, Sites 1089-1092). This accounts especially for the Pleistocene zonation where Hemidiscus karstenii, whose first abundant occurrence datum and last occurrence datum defines the subzonation of the northern Thalassiosira lentiginosa Zone, occurs only sporadically in the cold-water realm south of the PFZ and thus is not applicable in sections from this area. However, newly established marker species assigned to the genus Rouxia (Rouxia leventerae and Rouxia constricta) are more related to cold-water environments and allow a refinement of the Pleistocene stratigraphic zonation for the southern cold areas. A study relying on quantitative counts of both Rouxia species confirms the utility of these stratigraphic markers for the identification of sequences attributed to marine isotope Stages 6 and 8 in the southern Southern Ocean (Zielinski et al., 2002).
Resumo:
Ocean Drilling Program Leg 167 represents the first time since 1978 that the North American Pacific margin was drilled to study ocean history. More than 7500 m of Quaternary to middle Miocene (14 Ma) sediments were recovered from 13 sites, representing the most complete stratigraphic sequence on the California margin. Diatoms are found in most samples in variable abundance and in a moderately well-preserved state throughout the sequence, and they are often dominated by robust, dissolution-resistant species. The Neogene North Pacific diatom zonation of Yanagisawa and Akiba (1998, doi:10.5575/geosoc.104.395) best divides the Miocene to Quaternary sequences, and updated ages of diatom biohorizons estimated based on the geomagnetic polarity time scale of Cande and Kent (1995, doi:10.1029/94JB03098) are slightly revised to adjust the differences between the other zonations. Most of the early middle Miocene through Pleistocene diatom datum levels that have been proven to be of stratigraphic utility in the North Pacific appear to be nearly isochronous within the level of resolution constrained by sample spacing. The assemblages are characterized by species typical of middle-to-high latitudes and regions of high surface-water productivity, predominantly by Coscinodiscus marginatus, Stephanopyxis species, Proboscia barboi, and Thalassiothrix longissima. Latest Miocene through Pliocene assemblages in the region of the California Current, however, are intermediate between those of subarctic and subtropical areas. As a result, neither the existing tropical nor the subarctic (high latitude) zonal schemes were applicable for this region. An interval of pronounced diatom dissolution detected throughout the Pliocene sequence apparently correspond to a relatively warmer paleoceanographic condition resulting in a slackening of the southward flow of the California Current.
Resumo:
Early Oligocene siliceous microfossils were recovered in the upper c. 193 m of the CRP-3 drillcore. Although abundance and preservation are highly variable through this section, approximately 130 siliceous microfossil taxa were identified, including diatoms, silicoflagellates, ebridians, chrysophycean cysts, and endoskeletal dinoflagellates. Well-preserved and abundant assemblages characterize samples in the upper c. 70 m and indicate deposition in a coastal setting with water depths between 50 and 200 m. Abundance fluctuations over narrow intervals in the upper c. 70 mbsf are interpreted to reflect environmental changes that were either conducive or deleterious to growth and preservation of siliceous microfossils. Only poorly-preserved (dissolved, replaced, and/or fragmented) siliceous microfossils are present from c. 70 to 193 mbsf. Diatom biostratigraphy indicates that the CRP-3 section down to c. 193 mbsf is early Oligocene in age. The lack of significant changes in composition of the siliceous microfossil assemblage suggests that no major hiatuses are present in this interval. The first occurrence (FO) of Cavitatus jouseanus at 48.44 mbsf marks the base of the Cavitatus jouseanus Zone. This datum is inferred to be near the base of Subchron C12n at c. 30.9 Ma. The FO of Rhizosolenia antarctica at 68.60 mbsf marks the base of the Rhizosolenia antarctica Zone. The FO of this taxon is correlated in deep-sea sections to Chron C13 (33.1 to 33.6 Ma). However, the lower range of R. antarctica is interpreted as incomplete in the CRP-3 drillcore, as it is truncated at an underlying interval of poor preservation: therefore, an age of c. 33.1 to 30.9 Ma is inferred for interval between c. 70 and 50 mbsf. The absence of Hemiaulus caracteristicus from diatom-bearing interval of CRP-3 further indicates an age younger than c. 33 Ma (Subchron C13n) for strata above c. 193 mbsf. Siliceous microfossil assemblages in CRP-3 are significantly different from the late Eocene assemblages reported CIROS-1 drillcore. The absence of H. caracteristicus, Stephanopyxis splendidus, and Pterotheca danica, and the ebridians Ebriopsis crenulata, Parebriopsis fallax, and Pseudoammodochium dictyoides in CRP-3 indicates that the upper 200 m of the CRP-3 drillcore is equivalent to part of the stratigraphic interval missing within the unconformity at c. 366 mbsf in CIROS-1.
Resumo:
A close examination of the siliceous microfossil assemblages from the sediments of ODP Leg 127, Japan Sea Sites 794, 795, and 797, reveals that upper Pliocene and Pleistocene assemblages have been subjected to more dissolution than have lower Pliocene assemblages. This conclusion is based on semiquantitative observations of samples processed for diatoms and radiolarians. Although preservation of opaline microfossils in some upper Pliocene and Pleistocene samples is better than others, in general, the poorly preserved state of these assemblages supports the notion that opal dissolution, in response to lowered productivity, is responsible for the paucity of siliceous microfossils in upper Pliocene and Pleistocene sediments. The lithological transition from diatomaceous oozes to silts and clays corresponds to a change between dominantly well preserved to more poorly preserved siliceous assemblages, and is termed the late Pliocene Japan Sea opal dissolution transition zone (ODTZ). The base of the ODTZ is defined as the uppermost occurrence of high abundances of moderately to well preserved valves of the diatom Coscinodiscus marginatus. The dissolution transition zone is characterized by partially dissolved refractory assemblages of radiolarians, the presence of C. marginatus girdles, C. marginatus fragments, siliceous sponge spicules, and a general decrease in weakly silicified, less solution resistant diatoms upward in the section. The top of the dissolution transition zone marks the level where whole C. marginatus valves and C. marginatus fragments are no longer present in significant numbers. Dissolution of the late Pliocene and Pleistocene opaline assemblages is attributed mainly to changes in paleoceanographic circulation patterns and decreased nutrient (dissolved silicon) contents of the water column, and possibly dissolution at the sediment/water interface, rather than to post-depositional dissolution or diagenesis. We suggest that the transition from silica-rich to silica-poor conditions in the Japan Sea was due to fluctuations of deep-water exchange with the Pacific through the Tsugaru Strait between 2.9 and 2.3 Ma.
Resumo:
The biostratigraphic distribution and abundance of lower Oligocene to Pleistocene diatoms is documented from Holes 747A, 747B, 748B, 749B, and 751A drilled during Ocean Drilling Program Leg 120 on the Kerguelen Plateau in the southeast Indian Ocean. The occurrence of middle and upper Eocene diatoms is also documented, but these are rare and occur in discrete intervals. The recovery of several Oligocene to Pleistocene sections with minimal coring gaps, relatively good magnetostratigraphic signatures, and mixed assemblages of both calcareous and siliceous microfossils makes the above four Leg 120 sites important biostratigraphic reference sections for the Southern Ocean and Antarctic continent. A high-resolution diatom zonation divides the last 36 m.y. into 45 zones and subzones. This zonation is built upon an existing biostratigraphic framework developed over the past 20 yr of Southern Ocean/Antarctic deep-sea coring and drilling. After the recent advances from diatom biostratigraphic studies on sediments from Legs 113, 114, 119, and 120, a zonal framework for the Southern Ocean is beginning to stabilize. The potential age resolution afforded by the high-diversity diatom assemblages in this region ranks among the highest of all fossil groups. In addition to the 46 datum levels that define the diatom zones and subzones, the approximate stratigraphic level, age, and magnetic anomaly correlative of more than 150 other diatom datums are determined or estimated. These total 73 datum levels for the Pliocene-Pleistocene, 67 for the Miocene, and 45 for the Oligocene. Greater stratigraphic resolution is possible as the less common and poorly documented species become better known. This high-resolution diatom stratigraphy, combined with good to moderately good magnetostratigraphic control, led to the recognition of more than 10 intervals where hiatuses dissect the Oligocene-Pleistocene section on the Kerguelen Plateau. We propose 12 new diatom taxa and 6 new combination
Resumo:
This paper documents the biostratigraphic distribution and abundance of diatoms from sites drilled during Ocean Drilling Program Leg 178, off the Pacific margin of the Antarctic Peninsula. Drift sediments cored on the continental rise at Sites 1095, 1096, and 1101 have good recovery and a well-defined paleomagnetic record. Well-preserved diatoms are present throughout the upper Miocene to middle Pliocene and in the upper Quaternary section of these sites. The stratigraphic occurrence of diatom species through these intervals defines numerous datum levels. Diatom events are given absolute age estimates through direct correlation to the established paleomagnetic stratigraphy of Sites 1095, 1096, and 1101. Leg 178 diatom biostratigraphic results enable the development of a regional stratigraphic framework for the Pacific sector of the Southern Ocean and record the interaction of open-ocean and shelf-margin diatom floras.
Resumo:
Long-term evolution is thought to take opportunities that arise as a consequence of mass extinction (as argued, for example, by Gould, 2002) and the following biotic recovery, but there is absolutely no evidence for this being the case. However, our study shows that eutrophication by oceanic mixing also played a part in the enhancement of several evolutionary events amongst marine organisms, and these results could indicate that the rates of oceanic biodiversification may be slowed if upwelling becomes weakened by future global warming. This paper defines three distinct evolutionary events of resting spores of the marine diatom genus Chaetoceros, to reconstruct past upwelling through the analysis of several DSDP, ODP and land-based successions from the North, South and equatorial Pacific as well as the Atlantic Ocean during the past 40 million years. The Atlantic Chaetoceros Explosion (ACE) event occurred across the E/O boundary in the North Atlantic, and is characterized by resting spore diversification that occurred as a consequence of the onset of upwelling following changes in thermohaline circulation through global cooling in the early Oligocene. Pacific Chaetoceros Explosion events-1 and -2 (PACE-1 and PACE-2) are characterized by relatively higher occurrences of iron input following the Himalayan uplift and aridification at 8.5 Ma and ca. 2.5 Ma in the North Pacific region. These events not only enhanced the diversification and increased abundance of primary producers, including that of Chaetoceros, other diatoms and seaweeds, but also stimulated the evolution of zooplankton and larger predators, such as copepods and marine mammals, which ate these phytoplankton and plants. Current thinking suggests new evolutionary niches open up after a mass extinction, but our study finds that eutrophication can also stimulate evolutionary diversification. Moreover, in the opposite fashion, our results show that as thermohaline circulation abates, global warming progresses and the ocean surface becomes warmer, many marine organisms will be affected by the environmental degradation.
Resumo:
A series of excellent upper Miocene through Quaternary diatomaceous sequences recovered at four sites during Leg 127 was examined for diatoms. The diagenetic transition from opal-A to opal-CT is a diachronic horizon from the uppermost part of the Denticulopsis katayamae Zone (8.5 Ma) at Hole 797B to the uppermost part of the Neodenticula kamtschatica Zone (5.73 Ma) at Hole 795A. The diatom zonation of Koizumi (1985) best divides the upper Miocene to Quaternary sequences above the opal-A/opal-CT boundary and also is useful to date carbonate concretions including diatoms below the boundary. Forty diatom datum levels were evaluated biostratigraphically based on the sediment accumulation rate curve, and several isochronous datum levels are newly proposed for the Japan Sea area. A warm-water current did not penetrated into the Japan Sea through the Tsushima strait during the late Miocene and Pliocene time, because subtropical warm-water diatoms are essentially not present in such sediment samples. The occurrences of diatom are cyclic throughout the Quaternary sediments and are affected by eustatic sea level changes.
Resumo:
Diatoms occur sporadically in lower Miocene to Holocene sediments recovered at ODP Site 645 and in upper Pliocene to Holocene sediments at ODP Site 646. The diatom assemblage at Site 645 contains rare stratigraphic indicators. Fragmentation of frustules and the occurrence of species characteristic of high-latitude shelf, upper-slope environments suggest current transportation from the shelf. The diatom abundance and preservation at Site 646 probably reflect climatic changes and are also affected by dissolution, but it is not possible to detect the dominant factor. Therefore, the stratigraphic ranges of the primary and secondary biostratigraphic indicators are often unreliable.
Resumo:
A large spatial scale study of the diatom species inhabiting waters from the subantarctic (Argentine shelf) to antarctic was made for the first time in order to understand the relationships between these two regions with regard to the fluctuations in diatom abundances in relation with environmental features, their floristic associations and the effect of the Polar Front as a biogeographic barrier. Species-specific diatom abundance, nutrient and chlorophyll-a concentration were assessed from 64 subsurface oceanographic stations carried out during the austral summer 2002, a period characterized by an anomalous sea-ice coverage corresponding to a ''warm year". Significant relationships of both diatom density and biomass with chlorophyll-a (positive) and water temperature (negative) were found for the study area as a whole. Within the Subantarctic region, diatom density and biomass values were more uniform and significantly (in average: 35 and 11 times) lower than those of the Antarctic region, and did not correlate with chlorophyll-a. In antarctic waters, instead, biomass was directly related with chlorophyll-a, thus confirming the important contribution of diatoms to the Antarctic phytoplanktonic stock. A total of 167 taxa were recorded for the entire study area, with Chaetoceros and Thalassiosira being the best represented genera. Species richness was maximum in subantarctic waters (46; Argentine shelf) and minimum in the Antarctic region (21; Antarctic Peninsula), and showed a significant decrease with latitude. Floristic associations were examined both qualitatively (Jaccard Index) and quantitatively (correlation) by cluster analyses and results allowed differentiating a similar number of associations (12 vs. 13, respectively) and two main groups of stations. In the Drake Passage, the former revealed that the main floristic change was found at the Polar Front, while the latter reflected the Southern ACC Front as a main boundary, and yielded a higher number of isolated sites, most of them located next to different Antarctic islands. Such differences are attributed to the high relative density of Fragilariopsis kerguelensis in Argentine shelf and Drake Passage waters and of Porosira glacialis and species of Chaetoceros and Thalasiosira in the Weddell Sea and near the Antarctic Peninsula. From a total of 84 taxa recorded in antarctic waters, only 17 were found exclusively in this region, and the great majority (67) was also present in subantarctic waters but in extremely low (< 1 cell/l) concentrations, probably as a result of expatriation processes via the ACC-Malvinas Current system. The present results were compared with those of previous studies on the Antarctic region with respect to both diatom associations in regular vs. atypically warm years, and the distribution and abundance of some selected planktonic species reported for surface sediments.
Resumo:
Ocean Drilling Program (ODP) Leg 183 Site 1140 provided a lower Oligocene to middle Miocene record of diatom assemblages from the northern Kerguelen Plateau. Samples were examined to improve the resolution of shipboard diatom biostratigraphy. The material is complementary to that recovered during ODP Legs 119 and 120, and the diatom zonation of Harwood and Maruyama could be readily applied. A standard succession of biostratigraphic zones from the middle Miocene and lower Oligocene was delineated, although some zones were unrecognizable because of poor core recovery. The detailed diatom biostratigraphy presented here agrees well with shipboard calcareous nannofossil biostratigraphy. Sediment accumulation rates based on diatom bioevents average 1.26 cm/k.y.
Resumo:
We present an SiF4 separation line, coupled to a laser fluorination system, which allows for an efficient combined silica d18O and d30Si analysis (50 min per sample). The required sample weight of 1.5-2.0 mg allows for high-resolution isotope studies on biogenic opal. Besides analytical tests, the new instrumentation set-up was used to analyse two marine diatom fractions (>63 µm, 10-20 µm) with different diatom species compositions extracted from a Bølling/Allerød-Holocene core section [MD01-2416, North-West (NW) Pacific] to evaluate the palaeoceanographic significance of the diatom isotopic signals and to address isotopic effects related to contamination and species-related isotope effects (vital and environmental effects). While d30Si offsets between the two fractions were not discernible, supporting the absence of species-related silicon isotope effects, systematic offsets occur between the d18O records. Although small, these offsets point to species-related isotope effects, as bias by contamination can be discarded. The new records strengthen the palaeoceanographic history during the last deglaciation in the NW Pacific characterized by a sequence of events with varying surface water structure and biological productivity. With such palaeoceanographic evolution it becomes unlikely that the observed systematic d18O offsets signal seasonal temperature variability. This calls for reconsideration of vital effects, generally excluded to affect d18O measurements.
Resumo:
The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.
Resumo:
The Middle Eocene diatom and silicoflagellate record of ODP Site 1260A (Demerara Rise) is studied quantitatively in order to throw light on the changes that siliceous phytoplankton communities experienced during a Middle Eocene warming event that occurred between 44.0 and 42.0 Ma. Both Pianka's overlap index, calculated per couple of successive samples, and cluster analysis, point to a number of significant turnover events highlighted by changes in the structure of floristic communities. The pre-warming flora, dominated by cosmopolitan species of the diatom genus Triceratium, is replaced during the warming interval by a new and more diverse assemblage, dominated by Paralia sulcata (an indicator of high productivity) and two endemic tropical species of the genus Hemiaulus. The critical warming interval is characterized by a steady increase in biogenic silica and a comparable increase in excess Ba, both reflecting an increase in productivity. In general, it appears that high productivity not only increased the flux of biogenic silica, but also sustained a higher diversity in the siliceous phytoplankton communities. The microflora preserved above the critical interval is once again of low diversity and dominated by various species of the diatom genus Hemiaulus. All assemblages in the studied material are characterized by the total absence of continental and benthic diatoms and the relative abundance of neritic forms, suggesting a transitional depositional environment between the neritic and the oceanic realms.