Marine diatoms in deep sea sediments


Autoria(s): Suto, Itsuki; Kawamura, Keita; Hagimoto, Shinta; Teraishi, Akihito; Tanaka, Yuichiro
Cobertura

MEDIAN LATITUDE: 33.099517 * MEDIAN LONGITUDE: 26.385957 * SOUTH-BOUND LATITUDE: -11.266500 * WEST-BOUND LONGITUDE: -117.900000 * NORTH-BOUND LATITUDE: 78.385400 * EAST-BOUND LONGITUDE: 145.557800 * DATE/TIME START: 1974-08-14T00:00:00 * DATE/TIME END: 1993-08-15T13:06:00

Data(s)

22/05/2012

Resumo

Long-term evolution is thought to take opportunities that arise as a consequence of mass extinction (as argued, for example, by Gould, 2002) and the following biotic recovery, but there is absolutely no evidence for this being the case. However, our study shows that eutrophication by oceanic mixing also played a part in the enhancement of several evolutionary events amongst marine organisms, and these results could indicate that the rates of oceanic biodiversification may be slowed if upwelling becomes weakened by future global warming. This paper defines three distinct evolutionary events of resting spores of the marine diatom genus Chaetoceros, to reconstruct past upwelling through the analysis of several DSDP, ODP and land-based successions from the North, South and equatorial Pacific as well as the Atlantic Ocean during the past 40 million years. The Atlantic Chaetoceros Explosion (ACE) event occurred across the E/O boundary in the North Atlantic, and is characterized by resting spore diversification that occurred as a consequence of the onset of upwelling following changes in thermohaline circulation through global cooling in the early Oligocene. Pacific Chaetoceros Explosion events-1 and -2 (PACE-1 and PACE-2) are characterized by relatively higher occurrences of iron input following the Himalayan uplift and aridification at 8.5 Ma and ca. 2.5 Ma in the North Pacific region. These events not only enhanced the diversification and increased abundance of primary producers, including that of Chaetoceros, other diatoms and seaweeds, but also stimulated the evolution of zooplankton and larger predators, such as copepods and marine mammals, which ate these phytoplankton and plants. Current thinking suggests new evolutionary niches open up after a mass extinction, but our study finds that eutrophication can also stimulate evolutionary diversification. Moreover, in the opposite fashion, our results show that as thermohaline circulation abates, global warming progresses and the ocean surface becomes warmer, many marine organisms will be affected by the environmental degradation.

Formato

application/zip, 12 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.811973

doi:10.1594/PANGAEA.811973

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Suto, Itsuki; Kawamura, Keita; Hagimoto, Shinta; Teraishi, Akihito; Tanaka, Yuichiro (2012): Changes in upwelling mechanisms drove the evolution of marine organisms. Palaeogeography, Palaeoclimatology, Palaeoecology, 339-341, 39-51, doi:10.1016/j.palaeo.2012.04.014

Palavras-Chave #6 type; A. ellipticus; A. endoi; A. ingens var. ingens; A. ingens var. nodus; A. ingens var. planus; A. insignis; A. komurae; A. octonarius; A. senarius; A. thumii; A. undulatus var. octoplicatus; A. vulgaris; abundance A= abundant, C = common, R = rare, B = barren; Actinocyclus ellipticus; Actinocyclus ingens var. ingens; Actinocyclus ingens var. nodus; Actinocyclus ingens var. planus; Actinocyclus octonarius; Actinocyclus spp.; Actinoptychus senarius; Actinoptychus spp.; Actinoptychus thumii; Actinoptychus undulatus var. octoplicatus; Actinoptychus vulgaris; Anaulus spp.; and G. micronodosus, hypovalve; and hyaline hypovalve; Asterolampra insignis; Asterolampra spp.; Asteromphalus spp.; Aulacoseira spp.; Azpeitia endoi; Azpeitia komurae; Azpeitia spp.; B. brunii; B. veniamini; Barron, 1985; Barron and Keller, 1983; Baxteria brunii; Baxteriopsis brunii; Biddulphia sp.; Biddulphia spp.; Bogorovia veniamini; C. asteromphaulus; C. barbadensis; C. biharensis; C. collarius; C. compacta; C. curvisetus; C. elegans; C. excavatus; C. excavatus var. quadriocellata; C. fossilis; C. hajosiae; C. jouseanus; C. marginatus; C. peplum; C. perforatus; C. praecompacta; C. reticulatus; C. rhombicus; C. trigonus; C. trochlea; Cavitatus jouseanus; central vaulted type; central vaulted type epivalve; central vaulted type hypovalve; central vaulted with knob; central vaulted with knobby type; central vaulted with knobby type hypovalve; central vaulted with spine; central vaulted with spinny type hypovalve; central vaulted with spiny type; central vaulted with spiny type hypovalve; Cestodiscus excavatus; Cestodiscus peplum; Cestodiscus reticulatus; Cestodiscus spp.; Chaetoceros spores; Chaet spores; circle type hypovalve; circle type hypovalve of; Circle type hypovalve of; Clavularia barbadensis; Coronodiscus collarius; Coronodiscus curvisetus; Coronodiscus trigonus; Coscinodiscus asteromphaulus; Coscinodiscus excavatus; Coscinodiscus excavatus var. quadriocellata; Coscinodiscus hajosiae; Coscinodiscus marginatus; Coscinodiscus perforatus; Coscinodiscus rhombicus; Coscinodiscus sp.; Coscinodiscus spp.; Costopyxis trochlea; Craspedodiscus elegans; Cymatosira biharensis; Cymatosira compacta; Cymatosira fossilis; Cymatosira praecompacta; Cymatosira sp.; Cymatosira spp.; D. architecturalis; D. capreola; D. debilis var. debilis; D. debilis var. montanus; D. japonica; D. mitra; D. pilusus; D. pilusus var. montanus; D. pilusus var. pilusus; D. rugosus; D. stimulus; Deep Sea Drilling Project; Depth; DEPTH, sediment/rock; Diatom; Diatom preserv; Diatom preservation; Diatoms; Diatoms, resting spores; Diatoms, valves; Diatoms indet; Diatoms indeterminata; Diatom spore; Diatom valves; Diatom zone; Dicladia capreola; Dicladia japonica; Dicladia mitra; Diploneis spp.; Dispinodiscus debilis var. debilis; Dispinodiscus debilis var. montanus; Dispinodiscus pilusus; Dispinodiscus pilusus var. montanus; Dispinodiscus pilusus var. pilusus; Dispinodiscus rugosus; Dispinodiscus stimulus; Distephanosira architecturalis; DSDP; epivalve; Epoch; Eucampia spp.; Event; Fenner, 1984; Formation; G. bifurcus; G. caveatus; G. cingulus var. cingulus; G. cingulus var. longus; G. danicum; G. decoratum; G. dicollinus; G. dimontanus; G. geminus; G. hirtus; G. incurvus; G. loricatum; G. micronodosus; G. pliocenus; G. rogersii; Gemellodiscus bifurcus; Gemellodiscus caveatus; Gemellodiscus cingulus var. cingulus; Gemellodiscus cingulus var. longus; Gemellodiscus dicollinus; Gemellodiscus dimontanus; Gemellodiscus geminus; Gemellodiscus hirtus; Gemellodiscus incurvus; Gemellodiscus micronodosus; Gemellodiscus pliocenus; Gemellodiscus sp.; Gemellodiscus spp.; Genus et species indet. 1; Genus et species indet. 1 [#]; Genus et species indet. 2; Genus et species indet. 2 [#]; Genus et species indet. 3; Genus et species indet. 3 [#]; girdle view; girdle view (knobbly type); girdle view (short spiny type); Goniothecium danicum; Goniothecium decoratum; Goniothecium loricatum; Goniothecium rogersii; Goniothecium spp.; Grammatophora spp.; gridle view; H. kittonii; H. subacutus; Hemiaulus kittonii; Hemiaulus spp.; Hemiaulus subacutus; hyaline hypovalve with double vaulted; hyaline type; hyaline type epivalve; hyaline type frustule; hyaline type hypovalve; Hyalodiscus spp.; hypovalve; hypovalve (L. bipolaris?); hypovalve (Liradiscus bipolaris?); hypovalve (X. type D); K. subrotunda; K. tricoronata; Kisseleviella sp.; Kisseleviella tricoronata; knobby type; knobby type hypovalve; Kozloviella subrotunda; L. akibae; L. barbadensis; L. bipolaris; L. caepus; L. castaneus; L. castaneus var. castaneus; L. castaneus var. reticulatus; L. cucurbitus; L. ellipticus; L. japonicus; L. nimbus; L. ornata; L. pacificus; L. petasus; L. plicatulus; L. reticulatus; lanceolated hyaline hypovalve; large pore type; Liradiscus akibae; Liradiscus barbadensis; Liradiscus bipolaris; Liradiscus caepus; Liradiscus castaneus; Liradiscus castaneus var. castaneus; Liradiscus castaneus var. reticulatus; Liradiscus cucurbitus; Liradiscus ellipticus; Liradiscus japonicus; Liradiscus nimbus; Liradiscus pacificus; Liradiscus petasus; Liradiscus plicatulus; Liradiscus reticulatus; Liradiscus sp.; Lisitzina ornata; M. humilis; M. norvegica; M. perizoma; M. simplex; miscelaneous; Monobranchia simplex; Monocladia alta; Monocladia humilis; Monocladia norvegica; Monocladia perizoma; Monocladia sp.; N. pelagica; Nannofossil zone; Nannos zone; Neodelphineis pelagica; Ocean Drilling Program; Odontella spp.; ODP; ODP sample designation; Opephora spp.; or G. micronodosus, hypovalve; or X. oblonga?; P: cf. chenvieri; P. aculeifera; P. americana; P. barbadensis; P. capreolus; P. carinifera; P. danica; P. directa; P. dubia; P. evermanii; P. norwegica; P. oligocaenica; P. petiolata; P. picus; P. reticulata; P. schraderi; P. simplex; P. sulcata; P. tetracladia; P. tetracornusa; P. tribranchiata; P. trinodis; P. witt; Paralia sp.; Paralia spp.; Paralia sulcata; Periptera petiolata; Periptera schraderi; Peripteropsis norwegica; Peripteropsis petiolata; Peripteropsis sp.; Peripteropsis tetracladia; Peripteropsis tetracornusa; Peripteropsis trinodis; Planifolia tribranchiata; Pleurosigma spp.; Porotheca danica; Pseudodimerogramma spp.; Pseudopodosira simplex; Pseudopodosira sp.; Pseudopodosira wittii; Pseudopyxilla americana; Pseudopyxilla capreolus; Pseudopyxilla directa; Pseudopyxilla dubia; Pseudopyxilla spp.; Pseudorocella barbadensis; Pseudostictodiscus picus; Pseudotriceratium cf. chenvieri; Pterotheca aculeifera; Pterotheca carinifera; Pterotheca evermanii; Pterotheca reticulata; Pyxilla oligocaenica; Pyxilla spp.; Q. montana; Q. paliesa; Q. palmesa; Q. rectagonuma; Q. tubera; Quadrocistella montana; Quadrocistella paliesa; Quadrocistella palmesa; Quadrocistella rectagonuma; Quadrocistella sp.; Quadrocistella spp.; Quadrocistella tubera; questionable; R. amphiceros; R. angulata; R. areolata; R. claviger; R. elongata; R. fossile; R. gelida; R. hannae; R. hebetata; R. marylandicus; R. miocenica; R. norwegica; R. obesa; R. palliola; R. praenitida; R. scalaris; R. styliformis; R. symmetrica; R. vigilans; Raphidodiscus marylandicus; Rhaphoneis amphiceros; Rhaphoneis angulata; Rhaphoneis elongata; Rhaphoneis fossile; Rhaphoneis scalaris; Rhaphoneis sp.; Rhaphoneis spp.; Rhizosolenia hebetata; Rhizosolenia miocenica; Rhizosolenia norwegica; Rhizosolenia palliola; Rhizosolenia spp.; Rhizosolenia styliformis; Riedelia claviger; Rocella gelida; Rocella praenitida; Rocella sp.; Rocella vigilans; Rossiella symmetrica; Rouxia hannae; Rouxia obesa; Rouxia spp.; Rutilaria areolata; Rutilaria sp.; S; S. akibae; S. altantemna; S. diadema; S. hanzawae; S. humiliantemna; S. marginata; S. medusae; S. polyacantha; S. reticulatum; S. rugosum; S. scarabaeum; S. schenckii; S. spinossima; S. turris; Samp com; Sample; Sample code/label; Sample comment; Sample ID; Sceptroneis pupa; Sceptroneis sp.; Scherer & Koc, 1996; Section; SECTION, height; sp. 1; sp. 1 (knobby+spiny); sp. 10; sp. 10 (Xp.+L.); sp. 11; sp. 11 (same from DSDP 369A); sp. 12; sp. 13; sp. 13+14; sp. 14; sp. 15; sp. 16; sp. 17; sp. 18; sp. 19; sp. 2; sp. 20; sp. 21; sp. 22; sp. 23; sp. 24; sp. 25; sp. 26; sp. 28; sp. 29; sp. 3; sp. 3 (tatenaga-samehada); sp. 30; sp. 31; sp. 4; sp. 5; sp. 6; sp. 7; sp. 7 (castaneus+reticulatus); sp. 7 (short spiny+samehada); sp. 8; sp. 9; sp. A; sp. A (monopolaris); sp. B; sp. C; sp. D; sp. E; sp. F; sp. G; sp. H; sp. I; sp. J; sp. K; sp. L; sp. M; sp. N; sp. O; sp. P; sp. Q; sp. R; sp. S; sp. T; sp. U; sp. V; sp. W; sp. X; sp. Y; sp. Z; Species richness; spiny trianglar type; spiny type; Stellarima spp.; Stepahnogonia hanzawae; Stepahnogonia polyacantha; Stepahnogonia spp.; Stephanopyxis marginata; Stephanopyxis schenckii; Stephanopyxis sp.; Stephanopyxis spinossima; Stephanopyxis spp.; Stephanopyxis turris; Syndendrium akibae; Syndendrium altantemna; Syndendrium diadema; Syndendrium humiliantemna; Syndendrium medusae; Syndendrium reticulatum; Syndendrium rugosum; Syndendrium scarabaeum; Syndendrium sp.; T. atlanticus; T. barbadense; T. branchiatum; T. californicus; T. concava; T. condecorum; T. ellipticus; T. hajosiae; T. inconspicuum; T. inconspicuum var. trilobata; T. irregulata; T. longissima; T. nidulus; T. nitzschioides; T. norvegicus; T. radiosoreticulatum; T. schulzii; T. simplex; T. spinosa; T. tortonicus; Thalassionema nitzschioides; Thalassiosira irregulata; Thalassiosira nidulus; Thalassiosira spp.; Thalassiothrix longissima; total counted; total number of fossil Chaetoceros resting spore valves counted; triangular; Triceratium barbadense; Triceratium branchiatum; Triceratium condecorum; Triceratium inconspicuum; Triceratium inconspicuum var. trilobata; Triceratium radiosoreticulatum; Triceratium schulzii; Triceratium sp.; Triceratium spp.; Trinacria sp.; Trinacria spp.; Trochosira concava; Trochosira spinosa; Truncatulus atlanticus; Truncatulus californicus; Truncatulus ellipticus; Truncatulus hajosiae; Truncatulus norvegicus; Truncatulus simplex; Truncatulus sp.; Truncatulus spp.; Truncatulus tortonicus; type A (knobbly type); type B (short spiny type); type C (long spiny type); type E (compressed type); type F (lanceolate-spiny type); V. chinchae; V. complexus; V. lanceolatus; V. simplexus; Vallodiscus chinchae; Vallodiscus complexus; Vallodiscus lanceolatus; Vallodiscus simplexus; Vallodiscus sp.; Vallodiscus spp.; valve of fossil Chaetoceros resting spores / 100 valves of other diatom species; valve of X. hirsuta or epivalve of G. micronodosus; valve of X. hirsuta or epivalve of G. micropunctatus; VG = very good, G = good, M = moderate, P = poor; X. acrolopha; X. biscoctiformis; X. brevispinosa; X. circulatus; X. globosa; X. hirsuta; X. lanceolatus; X. maculata; X. norwegica; X. obesa; X. oblonga; X. panduraeformis; X. polaris; X. praemaculata; X. reticulata; X. specticularis; X. teneropunctata; Xanthioisthmus biscoctiformis; Xanthioisthmus maculata; Xanthioisthmus panduraeformis; Xanthioisthmus praemaculata; Xanthioisthmus sp.; Xanthioisthmus specticularis; Xanthiopyxis acrolopha; Xanthiopyxis brevispinosa; Xanthiopyxis circulatus; Xanthiopyxis globosa; Xanthiopyxis hirsuta; Xanthiopyxis lanceolatus; Xanthiopyxis norwegica; Xanthiopyxis obesa; Xanthiopyxis oblonga; Xanthiopyxis polaris; Xanthiopyxis reticulata; Xanthiopyxis sp.; Xanthiopyxis spp.; Xanthiopyxis teneropunctata; Yanagisawa and Akiba, 1998
Tipo

Dataset