946 resultados para Acer campestre
Resumo:
Janczyk-Kopikowa (1966): The series of the organic deposits, developed in the vicinity of Golkow near Warsaw as oil shales and peats, was laid down in a grough valley and now rests on the deposits of the Middle Polish Glaciation (Riss). The organic deposits are overlain by the fluviale deposits of the North Polish Glaciation (Würm). The locality Golkow occurs beyond the extent of the continental glacier of this glaciation. Polen analysis completed by microfloristic examinations allows to determine the age of the organic series that is thought to be Eemian. The pollen diagram from Golkow does not call in question the stratigraphical position of the deposits investigated mainly due to its characteristic features such as minimum content of coniferous trees in the climatic optimum - about 5%, high percentage of Corylus - 77.5% and well developed phase of hornbeam. It may be well compared with other Eemian diagrams from the area of Poland and reveals much similar features. The development of vegetation at Golkow has depended upon the prevailing climate. At first, the cool climate brings about the development of plants having small thermal requirements. Here belong thin, park-like forests with pine and birch (Pinus, Betula) accompanied by the heliophilic plants such as Hippohäe and Ephedra. Improvement of climate that becomes warm and humid provides for development of deciduous forests prevailing in the climatic optimum, of the interglacial. Decrease of temperature causes a repeated change in the type of forest. This latter changes into coniferous forest with prevailing spruce (Picea) and fir (Abies) at the beginning, and then with pine (Pinus) and birch (Betula). During the Eemian Interglacial, the development of plants at Golkow terminates with a new and long-lasting predominance of pine-birch forests. However, such a longevity may be apparent only. Apparent character of this phenomenon is proved by a fact that the pollen spectra of the warm climatic periods have found their reflex in the oil shale that increased considerably slower than the layers off feebly decomposed peat evidencing the existence of cool pine-birch forests from the decline of the Interglacial. The water basin, in which the polen grains were laid down from surrounding plants is characterized by a calm sedimentation as proved by the occurrence of the oil shale. An insignificant water flow left behind some thin sand laminae. The not too deep basin becomes shallower owing to the growing water vegetation, and marshy vegetation. The growing of the plants causes a complete shallowing of the basin and formation of peat bog in situ, as proved by the peat beds occurring in the section. ---- Gadomska (1966): In the vicinity of Golków a series of organic deposits occurs amounting to 6.5-9.3 m in thickness, and consisting of oil shales, lacustrine silts and sands, as well as peats and peaty silts. The organic deposits fill up an old, small, but fairly deep lake basin, probably of finger-lake origin. It may be seen to-day as a slight lowering of the relief, filled up with soaked ground, stretching from north to south. On the basis of palaeobotanical examinations the organic deposits considered are of Eemian Interglacial age (Z. Janczyk-Kopikowa, 1063). The lower part of the organic series consists of a compact oil shale horizon, the maximum thickness of which may attain up to 8 m. The oil shales contain particularly in their upper part, numerous intercalations of arenaceous silts, dark grey or black in colour, or of sands mainly of lacustrine provenance. At the top of the oil shales are found peats, up to 2.5 m in thickness, covered by black, humus silts with numerous plant remains. The Eemian Interglacial deposits are covered by a series of fluviatile sands belonging partly to the Baltic Glaciation (bottom part of the series), partly to the Holocene (top part of the series). The thickness of the sands is 0.5-3.7 m. Higher up, there are found the Holocene and present-day deposits developed as clayey alluvion, or arenaceous slide rocks, or arenaceous-silty soil.
Resumo:
Site details: The raised bog Fláje-Kiefern (50°429N, 13°329 E; 760 m a.s.l.; size ca. 500x500 m) lies in the Krusné Hory Mountains (Erzgebirge), Czech Republic, about 10 km from Georgenfelder Moor in Germany. Hejny and Slavík (1988) described the phytogeographic region of the Krusne Hory Mountains as 'a region of mountain flora and vegetation, with thermophilous species largely missing. In the natural forests, conifers, especially spruce (Picea excelsa) prevail. The deforested areas have been converted into meadows and pastures'. The climate is cool with annual average temperatures of about 5°C and annual precipitation of about 900 mm. The bedrock is Precambrian crystallinicum.
Resumo:
A long-running interdisciplinary research project on the development of landscape, prehistoric habitation and the history of vegetation within a "siedlungskammer" (limited habitation areal from neolithic to modern times has been carried out in the NW German lowlands, The siedlungskammer Flögeln is situated between the rivers Weser and EIbe and comprises about 23.5 km^2. It is an isolated pleistocene area surrounded by bogs, the soils consisting mainly of poor sands. In this siedlungskammer large-seale archaeological excavations and mappings have been performed, parallel to pedological, historical and above all pollen analytical investigations. The aim of the project is to record the individual phases in time, to delimit the respective settlement areas and to reconstruct the conditions of life and economy for each time period. A dense network of 10 pollen diagrams has been constructed. Several of them derive from the marginal area and from the centre of the large raised bog north of the siedlungskammer. These diagrams reflect the history of vegetation and habitation of a large region; due to the large pollen source area the habitation phases in the diagrams are poorly defined. Even in the utmost marginal diagram of this woodless bog, a great village with adjoining fields, situated only 100 m away from it, is registered with only low values of anthropogenic indicators. In contrast to this, the numerous pollen diagrams from kettle-hole bogs inside the siedlungskammer yield an exact picture of the habitation of the siedlungskammer and their individual parts. Early traces of habitation can be identified in the pollen diagram soon after the elm decline (around 5190 BP). Some time later in the middle neolithic period there follows a marked habitation phase, which starts between 4500 and 4400 BP and reflects the immigration of the trichterbecher culture. It corresponds to the landnam phase of Iversen in Denmark and begins with a sharp decline of the pollen curves of lime and oak, followed by the increase of anthropogenic indicators pointing to arable and pastural farming. High values of wild grasses and Calluna witness extensive forest grazing. This middle to late neolithic habitation is also registered archaeologically by settlements and numerous graves. After low human activity during Bronze Age and Older Iron Age times the archaeological and pollen analytical records of Roman and Migration periods is again very strong. This is followed by a gap in habitation during the 6th and 7th centuries and afterwards in the western part of the siedlungskammer from about 700 AD until the 14th century by the activity of the medieval village of Dalem, that was also excavated and whose fields were recorded by phosphate mapping to a size of 117 hectares. This medieval settlement phase is marked by much cereal cultivation (mainly rye). The dense network of pollen diagrams offers an opportunity to register the dispersion of the anthropogenic indicators from the areas of settlement to different distances and thus to obtain quantitative clues for the assessment of these anthropogenic indicators in pollen diagrams. In fig. 4 the reflection of the neolithic culture in the kettle-hole bogs and the large raised bog is shown in 3 phases: a) pre landnam, b) TRB-landnam, c) post landnam. Among arboreal pollen the reaction of Quercus is sharp close to the settlement but is not found at more distant profiles, whilst in contrast to this Tilia shows a significant decline even far away from the settlements. The record of most anthropogenic indicators outside the habitation area is very low, in particular cereal pollen is poorly dispersed; much more certain as an indicator for habitation (also for arable farming!) is Plantago lanceolata. A strong increase of wild grasses (partly Calluna aswell) some distance from the habitation areas indicates far reaching forest grazing. Fig. 5 illustrates the reflection of the anthropogenie indicators from the medieval village Dalem. In this instance the field area could be mapped exactly using phosphate investigations, and it has been possible to indicate the precise distances of the profile sites from the medieval fields. Here also, there is a clear correlation between decreasing anthropogenic indicators and increasing distance. In a kettle-hole bog (FLH) a distance of 3000 m away this marked settlement phase is not registered. The contrast between the pollen diagrams SWK and FLH (fig. 2 + 3, enclosure), illustrates the strong differences between diagrams from kettlehole bogs close to and distant from the settlements, for the neolithic as well as for the medieval period. On the basis of the examples presented here, implications concerning the interpretation of pollen diagrams with respect to habitation phases are discussed.
Resumo:
The decomposition rate of organic, Compounds, following the death of a plant, is dependent on several external factors. Assimilatory pigments generally undergo a rapid degradation. In certain condition, however, their decomposition may be considerably retarded; e.g. compounds similar to chlorophyll and some carotenoids, as a and ß-carotene, lutein and others, may persist several thousand years in marine and lake Sediments (Vallentyne 1960). Derivatives of chlorophyll were also found in the surface layer of wood soil (Gorham 1959). In this connection the question arises, in what a way a still different environment, namely peat, influences the decomposition rate of pigments. The starting point in these investigations was the fact observed by one of the co-authors, that many subfossil fir needles from various depths of the peat bog in Cergowa Gora were bright yellow green pigmented. Macroscopic otoservations have already suggested that, at least, a part of the pigments did not undergo decomposition. A study was undertaken with the aim to determine the quantitative and qualitative changes in assimilatory pigments, occurring in fir needles in dependence on the pexiod of time they were lying in the peat bog.
Resumo:
In der Döberitzer Heide nördlich von Potsdam wurden vegetationsgeschichtliche Untersuchungen durchgeführt. Das Untersuchungsgebiet befindet sich im östlichen Teil der Nauener Platte, die bisher vegetationsgeschichtlich weitgehend unerforscht war. In sechs verschiedenen Mooren wurden acht Bohrungen niedergebracht. Die Bohrkerne wurden stratigraphisch und pollenanalytisch untersucht und für die Radiocarbondatierung beprobt. Die Pollendiagramme ermöglichen die Rekonstruktion der Vegetationsentwicklung der terrestrischen Standorte und der Moore in der Döberitzer Heide in den letzten 14.000 Jahren. Neben einer Revision der Gliederungsprinzipien der spätglazialen Vegetationsentwicklung Brandenburgs und einer vergleichenden Betrachtung der Moorentwicklung in der Döberitzer Heide wurde besonderes Augenmerk auf die Geschichte des Döberitzer Lindenwaldes gerichtet, der einen Sonderfall in der brandenburgischen Vegetation darstellt. Die Untersuchungen boten die Möglichkeit, die Ursachen seiner Entstehung zu klären, Aussagen zu den Perspektiven seiner Entwicklung zu treffen und mögliche Entwicklungspotentiale von Lindenwäldern im Land Brandenburg aufzuzeigen.
Resumo:
Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.
Resumo:
Die pollenanalytische Untersuchung des Rotmooses in Verbindung mit C-14 Daten hat ergeben, daß die organogenen Sedimente nachwärmezeitliche Bildungen sind. Ein Gletschervorstoß um 2500 v. Chr. konnte mit Hilfe der C-14 Daten eingegrenzt und mit anderen Fundstellen parallelisiert werden. Weitere pollenanalytisch festgestellte Gletscher und auch Waldgrenzschwankungen konnten festgestellt, müssen aber noch genau datiert und parallelisiert werden.