923 resultados para ATOMIC-FORCE SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adhesion force between an atomic force microscope (AFM) tip and sample surfaces, mica and quartz substrates, was measured in air and water. The force curves show that the adhesion has a strong dependence on both the surface roughness and the environmental conditions surrounding the sample. The variability of the adhesion force was examined in a series of measurements taken at the same point, as well as at different places on the sample surface. The adhesion maps obtained from the distribution of the measured forces indicated regions contaminated by either organic compounds or adsorbed water. Using simple mathematical expressions we could quantitatively predict the adhesion force behavior in both air and water. The experimental results are in good agreement with theoretical calculations, where the adhesion forces in air and water were mostly associated with capillary and van der Waals forces, respectively. A small long-range repulsive force is also observed in water due to the overlapping electrical double-layers formed on both the tip and sample surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbiological leaching of chalcopyrite (CuFeS2) is of great interest because of its potential application to many CuFeS2-rich ore materials. However, the efficiency of the microbiological process is very limited because this mineral is one of the most refractory to bacterial attack. Knowledge of bacterial role during chalcopyrite oxidation is very important in order to improve the efficiency of bioleaching operation. The oxidative dissolution of a massive chalcopyrite electrode by Acidithiobacillus ferrooxidans was evaluated by electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). A massive chalcopyrite electrode was utilized in a Tait-type electrochemical cell in acid medium for different immersion times in the presence or absence of bacterium. The differences observed in the impedance diagrams were correlated with the adhesion process of bacteria on the mineral surface. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the study of the dynamics of the unbinding process under a force load f of adsorbed proteins (fibrinogen) on a solid surface (hydrophilic silica) by means of atomic force microscopy spectroscopy. By varying the loading rate rf, defined by f = rf t, t being the time, we find that, as for specific interactions, the mean rupture force increases with rf. This unbinding process is analyzed in the framework of the widely used Bell model. The typical dissociation rate at zero force entering in the model lies between 0.02 and 0.6 s−1. Each measured rupture is characterized by a force f0, which appears to be quantized in integer multiples of 180–200 pN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connectivity of the glycocalyx covering of small communities of Acidithiobacillus ferrooxidans bacteria deposited on hydrophilic mica plates was imaged by atomic force microscopy. When part of the coverage was removed by water rinsing, an insoluble structure formed by corrals surrounding each individual bacterium was observed. A collective ring structure with clustered bacteria (>= 3) was observed, which indicates that the bacteria perceived the neighborhood in order to grow a protective structure that results in smaller production of exopolysaccharides material. The most surprising aspect of these collective corral structures was that they occur at a low bacterial cell density. The deposited layers were also analyzed by confocal Raman microscopy and shown to contain polysaccharides, protein, and glucoronic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ph.D. thesis deals with the conformational study of individual cylindrical polymer brush molecules using atomic force microscopy (AFM). Imaging combined with single molecule manipulation has been used to unravel questions concerning conformational changes, desorption behavior and mechanical properties of individual macromolecules and supramolecular structures. In the first part of the thesis (chapter 5) molecular conformations of cylindrical polymer brushes with poly-(N-isopropylacrylamide) (PNIPAM) side chains were studied in various environmental conditions. Also micelle formation of cylindrical brush-coil blockcopolymers with polyacrylic acid side chains and polystyrene coil have been visualized. In chapter 6 the mechanical properties of single cylindrical polymer brushes with (PNIPAM) side chains were investigated. Assuming that the brushes adopt equilibrium conformation on the surface, an average persistence length of lp= (29 ± 3) nm was determined by the end-to-end distance vs. contour length analysis in terms of the wormlike chain (WLC) model. Stretching experiments suggest that an exact determination of the persistence length using force extension curves is impeded by the contribution of the side chains. Modeling the stretching of the bottle brush molecule as extension of a dual spring (side chain and main chain) explains the frequently observed very low persistence length arising from a dominant contribution of the side chain elasticity at small overall contour lengths. It has been shown that it is possible to estimate the “true” persistence length of the bottle brush molecule from the intercept of a linear extrapolation of the inverse square root of the apparent persistence length vs. the inverse contour length plot. By virtue of this procedure a “true” persistence length of 140 nm for the PNIPAM brush molecules is predicted. Chapter 7 and 8 deal with the force-extension behavior of PNIPAM cylindrical brushes studied in poor solvent conditions. The behavior is shown to be qualitatively different from that in a good solvent. Force induced globule-cylinder conformational changes are monitored using “molecule specific force spectroscopy” which is a combined AFM imaging and SMFS technique. An interesting behavior of the unfolding-folding transitions of single collapsed PNIPAM brush molecules has been observed by force spectroscopy using the so called “fly-fishing” mode. A plateau force is observed upon unfolding the collapsed molecule, which is attributed to a phase transition from a collapsed brush to a stretched conformation. Chapter 9 describes the desorption behavior of single cylindrical polyelectrolyte brushes with poly-L-lysine side chains deposited on a mica surface using the “molecule specific force spectroscopy” technique to resolve statistical discrepancies usually observed in SMFS experiments. Imaging of the brushes and inferring the persistence length from a end-to-end distance vs. contour length analysis results in an average persistence length of lp = (25 ± 5) nm assuming that the chains adopt their equilibrium conformation on the surface. Stretching experiments carried out on individual poly-L-lysine brush molecules by force spectroscopy using the “fly-fishing” mode provide a persistence length in the range of 7-23 nm in reasonable accordance with the imaging results. In chapter 10 the conformational behavior of cylindrical poly-L-lysine brush-sodium dodecyl sulfate complexes was studied using AFM imaging. Surfactant induced cylinder to helix like to globule conformational transitions were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein aggregation and formation of insoluble aggregates in central nervous system is the main cause of neurodegenerative disease. Parkinson’s disease is associated with the appearance of spherical masses of aggregated proteins inside nerve cells called Lewy bodies. α-Synuclein is the main component of Lewy bodies. In addition to α-synuclein, there are more than a hundred of other proteins co-localized in Lewy bodies: 14-3-3η protein is one of them. In order to increase our understanding on the aggregation mechanism of α-synuclein and to study the effect of 14-3-3η on it, I addressed the following questions. (i) How α-synuclein monomers pack each other during aggregation? (ii) Which is the role of 14-3-3η on α-synuclein packing during its aggregation? (iii) Which is the role of 14-3-3η on an aggregation of α-synuclein “seeded” by fragments of its fibrils? In order to answer these questions, I used different biophysical techniques (e.g., Atomic force microscope (AFM), Nuclear magnetic resonance (NMR), Surface plasmon resonance (SPR) and Fluorescence spectroscopy (FS)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was to apply the techniques of the atomic force microscope (AFM) to biological samples, namely lipid-based systems. To this end several systems with biological relevance based on self-assembly, such as a solid-supported membrane (SSM) based sensor for transport proteins, a bilayer of the natural lipid extract from an archaebacterium, and synaptic vesicles, were investigated by the AFM. For the characterization of transport proteins with SSM-sensors proteoliposomes are adsorbed that contain the analyte (transport protein). However the forces governing bilayer-bilayer interactions in solution should be repulsive under physiological conditions. I investigated the nature of the interaction forces with AFM force spectroscopy by mimicking the adsorbing proteoliposome with a cantilever tip, which was functionalized with charged alkane thiols. The nature of the interaction is indeed repulsive, but the lipid layers assemble in stacks on the SSM, which expose their unfavourable edges to the medium. I propose a model by which the proteoliposomes interact with these edges and fuse with the bilayer stacks, so forming a uniform layer on the SSM. Furthermore I characterized freestanding bilayers from a synthetic phospholipid with a phase transition at 41°C and from a natural lipid extract of the archaebacterium Methanococcus jannaschii. The synthetic lipid is in the gel-phase at room temperature and changes to the fluid phase when heated to 50°C. The bilayer of the lipid extract shows no phase transition when heated from room temperature to the growth temperature (~ 50°C) of the archeon. Synaptic vesicles are the containers of neurotransmitter in nerve cells and the synapsins are a family of extrinsic membrane proteins, that are associated with them, and believed to control the synaptic vesicle cycle. I used AFM imaging and force spectroscopy together with dynamic light scattering to investigate the influence of synapsin I on synaptic vesicles. To this end I used native, untreated synaptic vesicles and compared them to synapsin-depleted synaptic vesicles. Synapsin-depleted vesicles were larger in size and showed a higher tendency to aggregate compared to native vesicles, although their mechanical properties were alike. I also measured the aggregation kinetics of synaptic vesicles induced by synapsin I and found that the addition of synapsin I promotes a rapid aggregation of synaptic vesicles. The data indicate that synapsin I affects the stability and the aggregation state of synaptic vesicles, and confirm the physiological role of synapsins in the assembly and regulation of synaptic vesicle pools within nerve cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was driven by the ambition to create suitable model systems that mimic complex processes in nature, like intramolecular transitions, such as unfolding and refolding of proteins, or intermolecular interactions between different cell compo-nents. Novel biophysical approaches were adopted by employing atomic force mi-croscopy (AFM) as the main measurement technique due to its broad diversity. Thus, high-resolution imaging, adhesion measurements, and single-molecule force distance experiments were performed on the verge of the instrumental capabilities. As first objective, the interaction between plasma membrane and cytoskeleton, me-diated by the linker protein ezrin, was pursued. Therefore, the adsorption process and the lateral organization of ezrin on PIP2 containing solid-supported membranes were characterized and quantified as a fundament for the establishment of a biomimetic model system. As second component of the model system, actin filaments were coated on functionalized colloidal probes attached on cantilevers, serving as sensor elements. The zealous endeavor of creating this complex biomimetic system was rewarded by successful investigation of the activation process of ezrin. As a result, it can be stated that ezrin is activated by solely binding to PIP2 without any further stimulating agents. Additional cofactors may stabilize and prolong the active conformation but are not essentially required for triggering ezrin’s transformation into an active conformation. In the second project, single-molecule force distance experiments were performed on bis-loop tetra-urea calix[4]arene-catenanes with different loading rates (increase in force per second). These macromolecules were specifically designed to investigate the rupture and rejoining mechanism of hydrogen bonds under external load. The entangled loops of capsule-like molecules locked the unbound state of intramolecular hydrogen bonds mechanically, rendering a rebinding observable on the experimental time scale. In conjunction with Molecular Dynamics simulations, a three-well potential of the bond rupture process was established and all kinetically relevant parameters of the experiments were determined by means of Monte Carlo simulations and stochastic modeling. In summary, it can be stated that atomic force microscopy is an invaluable tool to scrutinize relevant processes in nature, such as investigating activation mechanisms in proteins, as shown by analysis of the interaction between F-actin and ezrin, as well as exploring fundamental properties of single hydrogen bonds that are of paramount interest for the complete understanding of complex supramolecular structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supramolecular assembly of amphiphilic oligopyrenotide building blocks (covalently linked heptapyrene, Py7) is studied by atomic force microscopy (AFM) in combination with optical spectroscopy. The assembly process is triggered in a controlled manner by increasing the ionic strength of the aqueous oligomer solution. Cooperative noncovalent interactions between individual oligomeric units lead to the formation of DNA-like supramolecular polymers. We also show that the terminal attachment of a single cytidine nucleotide to the heptapyrenotide (Py7-C) changes the association process from a cooperative (nucleation−elongation) to a noncooperative (isodesmic) regime, suggesting a structure misfit between the cytidine and the pyrene units. We also demonstrate that AFM enables the identification and characterization of minute concentrations of the supramolecular products, which was not accessible by conventional optical spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current–distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.