986 resultados para ATOMIC SPECTROSCOPY


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (11) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min(-1) sample loading rate. The detection limit was 0.2 ng L-1 and much lower than that of conventional method (around 15.8 ng L-1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L-1 of Hg and the linear working curve is from 20 to 2000 ng L-1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present paper reports some definite evidence for the significance of wavelength positioning accuracy in multicomponent analysis techniques for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). Using scanning spectrometers commercially available today, a large relative error, DELTA(A) may occur in the estimated analyte concentration, owing to wavelength positioning errors, unless a procedure for data processing can eliminate the problem of optical instability. The emphasis is on the effect of the positioning error (deltalambda) in a model scan, which is evaluated theoretically and determined experimentally. A quantitative relation between DELTA(A) and deltalambda, the peak distance, and the effective widths of the analysis and interfering lines is established under the assumption of Gaussian line profiles. The agreement between calculated and experimental DELTA(A) is also illustrated. The DELTA(A) originating from deltalambda is independent of the net analyte/interferent signal ratio; this contrasts with the situation for the positioning error (dlambda) in a sample scan, where DELTA(A) decreases with an increase in the ratio. Compared with dlambda, the effect of deltalambda is generally less significant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present paper deals with the evaluation of the relative error (DELTA(A)) in estimated analyte concentrations originating from the wavelength positioning error in a sample scan when multicomponent analysis (MCA) techniques are used for correcting line interferences in inductively coupled plasma atomic emission spectrometry. In the theoretical part, a quantitative relation of DELTA(A) with the extent of line overlap, bandwidth and the magnitude of the positioning error is developed under the assumption of Gaussian line profiles. The measurements of eleven samples covering various typical line interferences showed that the calculated DELTA(A) generally agrees well with the experimental one. An expression of the true detection limit associated with MCA techniques was thus formulated. With MCA techniques, the determination of the analyte and interferent concentrations depend on each other while with conventional correction techniques, such as the three-point method, the estimate of interfering signals is independent of the analyte signals. Therefore. a given positioning error results in a larger DELTA(A) and hence a higher true detection limit in the case of MCA techniques than that in the case of conventional correction methods. although the latter could be a reasonable approximation of the former when the peak distance expressed in the effective width of the interfering line is larger than 0.4. In the light of the effect of wavelength positioning errors, MCA techniques have no advantages over conventional correction methods unless the former can bring an essential reduction ot the positioning error.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Correction of spectral overlap interference in inductively coupled plasma atomic emission spectrometry by factor analysis is attempted. For the spectral overlap of two known lines, a data matrix can be composed from one or two pure spectra and a spectrum of the mixture. The data matrix is decomposed into a spectra matrix and a concentration matrix by target transformation factor analysis. The component concentration of interest in a binary mixture is obtained from the concentration matrix and interference from the other component is eliminated. This method is applied to correcting spectral interference of yttrium on the determination of copper and aluminium: satisfactory results are obtained. This method may also be applied to correcting spectral overlap interference for more than two lines. Like other methods of correcting spectral interferences, factor analysis can only be used for additive spectral overlap. Results obtained from measurements on copper/yttrium mixtures with different white noise added show that random errors in measurement data do not significantly affect the results of the correction method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the evaluation of the reliability of the analytical results obtained by Kalman filtering. Two criteria for evaluation were compared: one is based on the autocorrelation analysis of the innovation sequence, the so-called NAC criterion; the other is the innovations number, which actually is the autocorrelation coefficient of the innovation sequence at the initial wavelength. Both criteria allow compensation for the wavelength positioning errors in spectral scans, but there exists a difference in the way they work. The NAC criterion can provide information about the reliability of an individual result, which is very useful for the indication of unmodelled emissions, while the innovations number should be incorporated with the normalization of the innovations or seek the help of the sequence itself for the same purpose. The major limitation of the NAC criterion is that it does not allow the theoretical modelling of continuous backgrounds, which, however, is convenient in practical analysis and can be taken with the innovations number criterion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the most attractive features of derivative spectrometry is its higher resolving power. In the present power, numerical derivative techniques are evaluated from the viewpoint of increase in selectivity, the latter being expressed in terms of the interferent equivalent concentration (IEC). Typical spectral interferences are covered, including flat background, sloped background, simple curved background and various types of line overlap with different overlapping degrees, which were defined as the ratio of the net interfering signal at the analysis wavelength to the peak signal of the interfering line. the IECs in the derivative spectra are decreased by one to two order of magnitudes compared to those in the original spectra, and in the most cases, assume values below the conventional detection limits. The overlapping degree is the dominant factor that determines whether an analysis line can be resolved from an interfering line with the derivative techniques. Generally, the second derivative technique is effective only for line overlap with an overlapping degree of less than 0.8. The effects of other factors such as line shape, data smoothing, step size and the intensity ratio of analyte to interferent on the performance of the derivative techniques are also discussed. All results are illustrated with practical examples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microwave digestions of mercury in Standards Reference Material (SRM) coal samples with nitric acid and hydrogen peroxide in quartz vessels were compared with Teflon® vessel digestion by using flow injection cold vapor atomic absorption spectrometry. Teflon® vessels gave poor reproducibiUty and tended to deliver high values, while the digestion results from quartz vessel show good agreement with certificate values and better standard deviations. Trace level elements (Ag, Ba, Cd, Cr, Co, Cu, Fe, Mg, Mn, Mo, Pb, Sn, Ti, V and Zn) in used oil and residual oil samples were determined by inductively coupled plasma-optical emission spectrometry. Different microwave digestion programs were developed for each sample and most of the results are in good agreement with certified values. The disagreement with values for Ag was due to the precipitation of Ag in sample; while Sn, V and Zn values had good recoveries from the spike test, which suggests that these certified values might need to be reconsidered. Gold, silver, copper, cadmium, cobalt, nickel and zinc were determined by continuous hydride generation inductively coupled plasma-optical emission spectrometry. The performance of two sample introduction systems: MSIS™ and gas-liquid separator were compared. Under the respective optimum conditions, MSIS^"^ showed better sensitivity and lower detection limits for Ag, Cd, Cu, Co and similar values for Au, Ni and Zn to those for the gas-liquid separator.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 mu g of sample. The in situ fusion was accomplished using 10 mu L of a flux mixture 4.0% m/v Na(2)CO(3) + 4.0% m/v ZnO + 0.1% m/v Triton (R) X-100 added over the cement sample and heated at 800 degrees C for 20 s. The resulting mould was completely dissolved with 10 mu L of 0.1% m/v HNO(3). Limits of detection were 0.11 mu g g(-1) for Co, 1.1 mu g g(-1) for Cr and 1.9 mu g g(-1) for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student`s t-test, p<0.05). In general, the relative standard deviation was lower than 12% (n = 5). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm: 202.585 nm; 202.586 nm: 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min(-1) sample flow-rate, calibration curves in the 0.1-0.5 mg L-1 Cu, 0.5-4.0 mg L-1 Fe, 0.5-4.0 mg L-1 Mn, 0.2-1.0 mg L-1 Zn, 10.0-100.0 mg L-1 Ca, 5.0-40.0 mg L-1 Mg and 50.0-250.0 mg L-1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89-103%, 84-107%, 87-103%, 85-105%, 92-106%, 91-114%, 96-114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L-1 Ca, 0.4 mg L-1 Mg, 0.4 mg L-1 K, 7.7 mu g L-1 Cu, 7.7 mu g L-1 Fe, 1.5 mu g L-1 Mn and 5.9 mu g L-1 Zn. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)