924 resultados para AQUEOUS SULFURIC-ACID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermoreversible sol-gel transition is well-known in biological and organic polymeric systems but has not been reported for inorganic systems. In this paper we put in evidence a thermoreversible sol-gel transition for zirconyl chloride aqueous solutions modified by sulfuric acid in the ratio 3:1 Zr:SO4. The synthesis conditions are detailed and a variety of experimental techniques (turbidimetry, dynamic rheology, and EXAFS) have been employed for investigating the thermal reversibility and the chemical structure of this new material. Turbidimetric measurements performed for solutions containing different concentrations of precursor have evidenced that the sol-gel transformation temperature increases from 50 to 80 degrees C as the concentration of zirconyl chloride decreases from 0.22 to 0.018 mol L-1. A more detailed study has been done for the sample with [Zr] = 0.156 mol L-1, in which the sol-gel-sol transformation has been repeated several times by a cyclic variation of the temperature. The mechanical properties of this sample, evaluated by measuring the storage and the loss moduli, show a change from liquid like to viscoelastic to elastic behavior during the sol-gel transition and vice versa during the gel-sol one. In situ EXAFS measurements performed at the Zr K-edge show that no change of the local order around Zr occurs during the sol-gel-sol transition, in agreement with the concept of physical gel formation. We have proposed for the structure of the precursor an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded in surface by complexing sulfate ligands, the sulfate groups act as a protective layer, playing a key role in the linking propagation among primary particles during sol-gel-sol transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sols produced by admixture of ZrOCl2 acidified solutions to hot H2SO4 aqueous solutions were studied to clarify the effects of Cl- and SO42- ions on the kinetic stability of nanoparticles and to obtain some new evidence concerning the mechanism of a thermoreversible sol-gel transition observed in this system. The study of suspensions prepared with different molar ratios R-S = [Zr]/[SO42-] and R-Cl = [Zr]/[Cl-] revealed domains of composition of formation of thermoreversible gels, thermostable sols, and powder precipitation. The effects of R-S and R-Cl on the structural features of nanoparticles and on the particle solution interface were systematically analyzed for samples of thermoreversible and thermostable sol domains. Small-angle X-ray scattering measurements revealed the presence of small fractal aggregates in all samples of thermoreversible domains, while compact packing aggregates of primary particles are present in the thermostable sol. Extended X-ray absorption fine structure and elemental chemical analysis revealed that irrespective of the nominal value of R-S and R-Cl all studied samples of the thermoreversible domain are constituted by a well-defined compound possessing an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded on the surface by complexing sulfate ligands. zeta potentials of powders extracted by freeze-drying from the thermoreversible gel revealed a point of surface charge inversion attributed to the specific adsorption of SO42- ion. Thermoreversible gel formation is rationalized by considering the effect of the specific adsorption on the electrical double-layer repulsion together with the temperature dependency of the physical chemical properties of ions in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium of dissolution of sulfur dioxide at ppm levels in aqueous solutions of dilute sulfuric acid is analyzed, and a general expression is derived relating the total concentration of sulfur dioxide in the liquid phase to the partial pressure of SO2 in the gas and to the concentration of sulfuric acid in the solution. The equation is simplified for zero and high concentrations of the acid. Experiments at high concentrations of sulfuric acid have enabled the direct determination of Henry’s constant and its dependency on temperature. Heat of dissolution is -31.47 kJ/mol. Experiments in the absence of sulfuric acid and the related simplified expression have led to the determination of the equilibrium constant of the hydrolysis of aqueous sulfur dioxide and its temperature dependency.The heat of hydrolysis is 15.69 kJ/mol. The model equation with these parameters predicts the experimental data of the present work as well as the reported data very well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleation is the first step of the process by which gas molecules in the atmosphere condense to form liquid or solid particles. Despite the importance of atmospheric new-particle formation for both climate and health-related issues, little information exists on its precise molecular-level mechanisms. In this thesis, potential nucleation mechanisms involving sulfuric acid together with either water and ammonia or reactive biogenic molecules are studied using quantum chemical methods. Quantum chemistry calculations are based on the numerical solution of Schrödinger's equation for a system of atoms and electrons subject to various sets of approximations, the precise details of which give rise to a large number of model chemistries. A comparison of several different model chemistries indicates that the computational method must be chosen with care if accurate results for sulfuric acid - water - ammonia clusters are desired. Specifically, binding energies are incorrectly predicted by some popular density functionals, and vibrational anharmonicity must be accounted for if quantitatively reliable formation free energies are desired. The calculations reported in this thesis show that a combination of different high-level energy corrections and advanced thermochemical analysis can quantitatively replicate experimental results concerning the hydration of sulfuric acid. The role of ammonia in sulfuric acid - water nucleation was revealed by a series of calculations on molecular clusters of increasing size with respect to all three co-ordinates; sulfuric acid, water and ammonia. As indicated by experimental measurements, ammonia significantly assists the growth of clusters in the sulfuric acid - co-ordinate. The calculations presented in this thesis predict that in atmospheric conditions, this effect becomes important as the number of acid molecules increases from two to three. On the other hand, small molecular clusters are unlikely to contain more than one ammonia molecule per sulfuric acid. This implies that the average NH3:H2SO4 mole ratio of small molecular clusters in atmospheric conditions is likely to be between 1:3 and 1:1. Calculations on charged clusters confirm the experimental result that the HSO4- ion is much more strongly hydrated than neutral sulfuric acid. Preliminary calculations on HSO4- NH3 clusters indicate that ammonia is likely to play at most a minor role in ion-induced nucleation in the sulfuric acid - water system. Calculations of thermodynamic and kinetic parameters for the reaction of stabilized Criegee Intermediates with sulfuric acid demonstrate that quantum chemistry is a powerful tool for investigating chemically complicated nucleation mechanisms. The calculations indicate that if the biogenic Criegee Intermediates have sufficiently long lifetimes in atmospheric conditions, the studied reaction may be an important source of nucleation precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of acid/base functional-groups associated with platinized-carbon electrodes on their catalytic activity toward electro-oxidation of methanol in sulfuric acid electrolyte at 60-degrees-C is studied. Platinized-carbon electrodes with sm amounts of functional groups exhibit higher catalytic activity compared to those with large concentrations of acidic/basic surface functionalities. The overpotential for methanol oxidation is minimum on electrodes of platinized carbons with pHzpc values between 6 and 7. An x-ray photoelectron spectroscopic study of various platinized carbons suggests that the acid/base surface functional-groups produce ample amounts of surface Pt-oxides and a consequent decrease in activity toward methanol oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper brings out the role of calcium carbonate (CaCO3) on the volume change behaviour of natural black cotton soil with 1N sulfuric acid (H2SO4) as pore fluid. Natural black cotton soil contained predominantly montmorillonite [Ca0.2(Al,Mg)2Si4 O10 (OH)2 .4H2O] along with other minerals such as amesite [(Mg Fe)2 Al (Si Al)2 O5 (OH)4], kalsilite [KAlSiO4] and quartz [SiO2]. The calcitic soil, reacted with H2SO4 during consolidation testing, showed the presence of the new mineral yavapaiite [K Fe(SO4)2]. Consequently, the carbonate soil treated with 1N H2SO4 led to higher swell at seating load and more compression upon loading than the soil with no carbonate. The swelling increased with increase in the amount of carbonate present in the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work.RESULTS: The data indicate that the rate constant (k(ao).) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10(-1.70). The activation energy (E.) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (C-min) is lower than 10(-5) mol L-1.CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: -d[Ce(IV)]/dt = 10(-1.70)[Ce(IV)] [(RNH3)(2)SO4](1.376). The rate-controlling step has been evaluated from analysis of the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraction equilibrium data of sulphuric acid and scandium(III) with bis(2,4,4-trimethylpentyl)phosphinic acid (H[BTMPP]) from sulphuric acid solutions have been obtained. There are two extraction mechanisms of scandium(III) with H[BTMPP] at different

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical generation of ozone by Ni/Sb-SnO2 anodes immersed in 0.5M H2SO4 was assessed in both flow and recycle systems using the same electrochemical cell. The anodes were found to exhibit current efficiencies of up to 50% for ozone generation under flow conditions at room temperature, with an optimum mole ratio in the precursor solutions of ca. 500:8:3 Sn:Sb:Ni and optimum cell voltage of 2.7V. A comparison of the data obtained under flow and recycle conditions suggests that the presence of ozone in the anolyte inhibits its formation. The minimum electrical energy cost achieved, of 18 kWh kg1 compares favorably with estimated costs for Cold Corona Discharge generally reported in the literature, especially when the very significant advantages of electrochemical ozone generation are taken into account.