1000 resultados para APPLIED PHYSICS
Resumo:
A method has been invented for determining nanoscale variations in the distribution of electric charge on surfaces. It has so far been used to examine specific inorganic materials, but could find widespread applications in imaging.
Resumo:
[1] Progress report no. 1, Jan. 15, 1954.--[2] Final report, June 30, 1954.
Resumo:
Contains bibliographies.
Resumo:
Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 mu m. The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication. (C) 1997 American Institute of Physics.
Resumo:
Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on the area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature. (C) 2014 AIP Publishing LLC.
Resumo:
The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (R-D-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic R-D-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a crossover region of width, DT, within which there is a large negative temperature coefficient of resistance. The R-D-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, R-D responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H-2) at the interface. A theoretical model is developed to simulate the R-D-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental R-D-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime of application is limited to a relatively narrow range (DT) for a given type of diode, the alternative methodology is of universal applicability to all metal-semiconductor combinations forming Schottky contacts. (C) 2015 AIP Publishing LLC.
Resumo:
In this work we use magnetic resonant x-ray diffraction to study the magnetic properties of a 1.5 mu m EuTe film and an EuTe/PbTe superlattice (SL). The samples were grown by molecular beam epitaxy on (111) oriented BaF(2) substrates. The measurements were made at the Eu L(2) absorption edge, taking profit of the resonant enhancement of more than two orders in the magnetically diffracted intensity. At resonance, high counting rates above 11000 cps were obtained for the 1.5 gm EuTe film, allowing to check for the type II antiferromagnetic order of EuTe. An equal population of the three possible in-plane magnetic domains was found. The EuTe/PbTe SL magnetic peak showed a satellite structure, indicating the presence of magnetic correlations among the 5 ML (monolayers) EuTe layers across the 15 ML PbTe non-magnetic spacers. The temperature dependence of the integrated intensities of the film and the SL yielded different Neel temperatures T(N). The lower T(N) for the SL is explained considering the higher influence of the surface atoms, with partial bonds lost.
Resumo:
Catalysts` precursor of Co/Mg/Al promoted with Ce and La were tested in the steam reforming of methane (SRM). The addition of promoters was made by anion-exchange. The oxides characterization was made by X-ray Photoelectron Spectroscopy (XPS) analysis that confirmed Co(2+) species in free form on surface and interacted with Mg and Al in the form of solid solution. In the SRM with high fed molar ratio of H(2)O:CH(4) = 4:1, the catalysts showed a great affinity with water and immediately deactivated by oxidation of the active sites. In the stoichiometric ratio of H(2)O:CH(4) = 2: 1 the catalysts were active and presented low carbon deposition during the time reaction tested. Also a test with low fed molar ratio H(2)O:CH(4) = 0.5:1 was carried out to evaluate the stability of the catalysts by CH(4) decomposition and all the catalysts were stable during 6 h of reaction. Promoted catalysts presented lower carbon deposition. (C) 2009 Elsevier B. V. All rights reserved.