26 resultados para APINAE
Resumo:
Neotropical orchid bees (Euglossini) are conspicuously different from other corbiculate bees (Apinae) in their lack of advanced sociality and in male use of acquired odors (fragrances) as pheromone-analogues. In both contexts, orchid bee mating systems, in particular the number of males a female mates with, are of great interest but are currently unknown. To assess female mating frequency in the genus Euglossa, we obtained nests from three species in Mexico and Panama and genotyped mothers and their brood at microsatellite DNA loci. In 26 out of 29 nests, genotypes of female brood were fully consistent with being descended from a singly mated mother. In nests with more than one adult female present, those adult females were frequently related, with genotypes being consistent with full sister-sister (r = 0.75) or mother-daughter (r = 0.5) relationships. Thus, our genetic data support the notions of female philopatry and nest-reuse in the genus Euglossa. Theoretically, single mating should promote the evolution of eusociality by maximizing the relatedness among individuals in a nest. However, in Euglossini this genetic incentive has not led to the formation of eusocial colonies as in other corbiculate bees, presumably due to differing ecological or physiological selective regimes. Finally, monandry in orchid bees is in agreement with the theory that females select a single best mate based on the male fragrance phenotype, which may contain information on male age, cognitive ability, and competitive strength.
Resumo:
The present paper describes the ultrastructural features of seminal vesicle, post-vesicular vas deferens and ejaculatory duct of Melipona bicolor bicolor from newly emerged and mature males. Although the results do not show very consistent morphological signs of secretory activity by the epithelium of these organs, lipidic droplets and lamellar granules present in mature males' seminal vesicles and the vacuoles present in post-vesicular vas deferens are probably secretion. Besides, the spermatozoa in the lumen are immersed in a material of characteristic structure, which must be produced in superior regions of the reproductive system of immature males, not studied here. The presence of sperm cells, apparently in cytoplasm vesicles of seminal vesicle and post-vesicular vas deferens, suggests spermiophagy by their epithelium.
Resumo:
The secretory cycle of hypopharyngeal glands (HPGs) in Scaptotrigona postica resembles that of Apis mellifera: in newly emerged workers the HPGs are in prefunctional state, their maximum development happens in the nurse workers and in forager workers they show signs of reabsorption. In S. postica these glands are also present in queens and males where they are more developed in newly emerged individuals. The ultrastructural features of the HPG secretory cycle in workers of S. postica and A. mellifera are alike: granular endoplasmic reticulum well developed, large secretion masses around the intracellular canaliculus in nurse workers and extensive degenerative structures in forager workers. Then it is suggested that the HPG secrete similar substances in both species. A second secretory cycle seems to occur in early foragers, may be with production of enzymes. The role of the HPGs in queens and males remains unknown but one possibility is enzyme production.
Resumo:
This research presents a comparative study of enzymatic activity of the hypopharyngeal gland extracts from workers of Apis mellifera in three physiologic stages: newly emerged, nurse and forager workers, with the objective of contributing to the comprehension of the gland function. In order to determinate the enzymes present in the extracts, the Api Zym kit (Bio Merieux) was used to test the activity of 19 different enzymes. The enzymes found in larger amounts only in the hypopharyngeal glands from certain individuals were the following: in newly emerged workers, the N-acetyl-double down arrow-glucosaminidase that may be digesting the chitin of some food ingested by the bee; in forager workers, the acid phosphatase that is likely acting in authophagic processes, the a-glucosidase, in the processing of nectar into honey, and the double down arrow-glucosidases, in the pollen digestion.
Resumo:
Caste determination in Trigona spinipes Fabricius (Hymenoptera, Apidae, Meliponini) is trophogenic. Larvae that eat about 360 mu l of food become queens, while those who consume 36 mu l develop into workers. We studied the effect of larval nutrition on the number and length of ovarioles and on ovarian development in fifth instar larvae, white eyed, pink eyed and black-eyed pupae as well as newly emerged adults. All larvae have four ovarioles per ovary, while in queen pupae this number ranged from 8 to 15. Cyst formation, the cell death and other characteristics of ovary morphogenesis were the same regardless of the quantity of food consumed. These results are discussed in relation to caste differentiation in other bees.
Resumo:
This article describes the location, anatomy, histology and ontogeny of adult Schwarziana quadripunctata exocrine glands. These glands appear either as individualized organs (salivary gland system and Dufour gland) or as epidermis differentiation (tegumentary glands). Variations in the occurrence and degree of development among colony components with regard to their degree of maturity are also described.
Resumo:
This research presents a comparative study of enzymatic activity of the hypopharyngeal gland extracts from workers of Apis mellifera in three physiologic stages: newly emerged, nurse and forager workers, with the objective of contributing to the comprehension of the gland function. In order to determinate the enzymes present in the extracts, the Api Zym kit (Bio Mérieux) was used to test the activity of 19 different enzymes. The enzymes found in larger amounts only in the hypopharyngeal glands from certain individuals were the following: in newly emerged workers, the N-acetyl-down double arrow sign-glucosaminidase that may be digesting the chitin of some food ingested by the bee; in forager workers, the acid phosphatase that is likely acting in authophagic processes, the a-glucosidase, in the processing of nectar into honey, and the down double arrow sign-glucosidases, in the pollen digestion.
Resumo:
This study reports on research of enzymes produced by the hypopharyngeal glands, which are related to food storing in the colony, from gland extracts from nurse and forager workers of S. postica. Only the presence of the saccharase was detected in the extracts from the glands of forager workers. The results were compared to the enzymatic content of similar extracts of A. mellifera taking into account the behavioral differences among the two species.
Resumo:
The midgut of Apis mellifera is remodeled during metamorphosis. The epithelium and, to a lesser extent, the muscular sheath degenerate between the end of the last larval instar and the onset of pupation (prepupa).The larval epithelium is shed to the midgut lumen and digested, while a new epithelium is reconstructed from larval regenerative cells. During pupation, some reorganization still occurs, mainly in brown-eyed pupae. In pharate adult, the midgut wall shows the characteristics of adult, although some cells have pycnotic nuclei. The localization of alkaline and acid phosphatases showed that these enzymes were not involved in the reabsorption of the midgut wall.
Resumo:
Hydrolytic enzymes from hypopharyngeal gland extracts of newly emerged, nurse and foraging workers of two eusocial bees, Scaptotrigona postica, a native Brazilian stingless bee, and the Africanized honey bee (Apis mellifera) in Brazil, were compared. The hypopharyngeal gland is rich in enzymes in both species. Fifteen different enzymes were found in the extracts, with only a few quantitative differences between the species. Some of the enzymes present in the extracts may have intracellular functions, while others seem to be digestive enzymes. Scaptotrigona postica, had lower β-glucosidase and higher lipase esterase activities than A. mellifera. The differences may be due to different feeding habits and behavioral peculiarities of the two species. ©FUNPEC-RP.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nestmate recognition is fundamental for the maintenance of social organization in insect nests. It is becoming well recognized that cuticle hydrocarbons mediate the recognition process, although the origin of recognition cues in stingless bees remains poorly explored. The present study investigates the effects of endogenously-produced and environmentally-acquired components in cuticular hydrocarbons in stingless bees. The tests are conducted using colonies of Plebeia droryana Friese and Plebeia remota Holmberg. Recognition tests are performed with four different groups: conspecific nestmates, conspecific non-nestmates, heterospecifics and conspecific, genetically-related individuals that emerge in a heterospecific nest. This last group is produced by introducing brood cells of P. droryana into a P. remota colony, and the resulting adult bees are tested for acceptance 10 days after emergence. For all groups, 15 individuals are sampled for chemical analysis. The results show the acceptance of all conspecific nestmates, and the rejection of almost every conspecific non-nestmate and every heterospecific bee. Genetically-related individuals emerging from heterospecific nests present intermediate rejection (66.7% rejection). Chemical analysis shows that P. droryana individuals emerging in a P. remota nest have small amounts of alkene and diene isomers found in P. remota cuticle that are not found in workers from the natal nest. The data clearly show that the majority of the compounds present in P. droryana cuticle are endogenously produced, although a few unsaturated compounds are acquired from the environment, increasing the chemical differences and, consequently, the rejection percentages.
Resumo:
The aim of the present study was to characterize the variation of the chemical profiles among workers in different colonies of the stingless bee Melipona marginata. We used gas chromatography and mass spectrometry (CG-MS) and multivariate analysis of the bees' chemical from three colonies of two localities in southeast Brazil. The results showed that cuticular hydrocarbon profiles clearly separated distinct colonies. We show here the importance of using the chemical analyses for characterization of colony membership, in addition of the traditional techniques of diversity analyses.
Resumo:
Stingless bees (Meliponini) constitute a diverse group of highly eusocial insects that occur throughout tropical regions around the world. The meliponine genus Melipona is restricted to the New World tropics and has over 50 described species. Melipona, like Apis, possesses the remarkable ability to use representational communication to indicate the location of foraging patches. Although Melipona has been the subject of numerous behavioral, ecological, and genetic studies, the evolutionary history of this genus remains largely unexplored. Here, we implement a multigene phylogenetic approach based on nuclear, mitochondrial, and ribosomal loci, coupled with molecular clock methods, to elucidate the phylogenetic relationships and antiquity of subgenera and species of Melipona. Our phylogenetic analysis resolves the relationship among subgenera and tends to agree with morphology-based classification hypotheses. Our molecular clock analysis indicates that the genus Melipona shared a most recent common ancestor at least similar to 14-17 million years (My) ago. These results provide the groundwork for future comparative analyses aimed at understanding the evolution of complex communication mechanisms in eusocial Apidae. (C) 2010 Elsevier Inc. All rights reserved.