34 resultados para ANHYDRIDES
Resumo:
Decarboxylative thioesterification of isatoic anhydrides mediated by benzyl(triethyl)ammonium tetrathiomolybdate gave the corresponding S-alkyl or S-aryl 2-aminobenzenecarbothioate derivatives at 60 degrees C. At ambient temperature, organic disulfides were reductive cleaved in the presence of tetrathiomolybdate to generate thiolate anions in situ; this was followed by attack on isatoic anhydrides to give the corresponding S-alkyl or S-aryl 2-aminobenzenecarbothioate derivatives. Additionally, it was shown that multistep reactions could be performed with tetrathiomolybdate, starting with an alkyl halide as a precursor of an alkyl disulfide, which, in turn, was used for ring opening of isatoic anhydrides.
Resumo:
Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.
Resumo:
2,2',3,3'-Oxydiphthalic dianhydride (2,2',3,3'-ODPA) and 2,3,3',4'-ODPA were synthesized from 3-chlorophthalic anhydride with 2,3-xylenol and 3,4-xylenol, respectively. Their structures were determined via single-crystal X-ray diffraction. A series of polyimides derived from isomeric ODPAs with several diamines were prepared in dimethylacetamide (DMAc) with the conventional two-step method. Matrix-assisted laser desorption/ionization time-of-flight spectra showed that the polymerization of 2,2',3,3'-ODPA with 4,4'-oxydianiline (ODA) has a greater trend to form cyclic oligomers than that of 2,3,3',4'-ODPA. Both 2,2',3,3'-ODPA and 2,3,3',4'-ODPA based polyimides have good solubility in polar aprotic solvents such as DMAc, dimethylformamide, and N-methylpyrrolidone. The 5% weight-loss temperatures of all polyimides were obtained near 500 degreesC in air. Their glass-transition temperatures measured by dynamic mechanical thermal analysis or differential scanning calorimetry decreased according to the order of polyimides on the basis of 2,2',3,3'-ODPA, 2,3,3',4'-ODPA, and 3,3',4,4'-ODPA. The wide-angle X-ray diffraction of all polyimide films from isomeric ODPAs and ODA showed some certain extent of crystallization after stretching. Rheological properties revealed that polyimide (2,3,3',4'-ODPA/ODA) has a comparatively lower melt viscosity than its isomers, which indicated its better melt processability.
Resumo:
Two distinct systems for the rhodium-catalyzed enantioselective desymmetrization of meso-cyclic anhydrides have been developed. Each system has been optimized and are compatible with the use of in situ prepared organozinc reagents. Rhodium/PHOX species efficiently catalyze the addition of alkyl nucleophiles to glutaric anhydrides, while a rhodium/phosphoramidite system is effective in the enantioselective arylation of succinic and glutaric anhydrides.
Resumo:
1,2-Enedioic systems, being sterically perturbed from planarity do not show the effect of the extended conjugation expected of a (formal) trienic entity. In the absence of a model which approximates to a uniplanar situation, the strategy of replacing an ester group in the enedioates by a cyano (for which less stringent steric demand may be presumed) and noting the correction concomitant to this replacement was adopted to arrive at a notional figure for the position of maximal absorption in the planar enedioates. From this the conclusion, subject to substantiation by molecular mechanical or quantum chemical calculations, was drawn that even the E-isomeric and comparatively less substituted enedioates are highly sterically perturbed. An alternative to an earlier explanation of the bathochromic shift of absorption maxima encountered in the 5-cyclic ene-ester and ene-nitrile, relative to the 6-cyclic analogues (observed also with the enedioates and cyanovinyl ester systems), seen later to have been based on unwarranted premises, has been advanced. A comment on the absorption characteristics of enedioic anhydrides has been appended.
Resumo:
A new case of the uncommon cis-trans enantiomerism is presented. The titled anhydride adducts were prepared in good yields by the known reaction of three 6-arylfulvenes with maleic anhydride (aryl = phenyl, p-tolyl and p-anisyl). The exo adducts were converted to the corresponding imides by reaction with (1S)-1-(naphth-1-yl)ethylamine in similar to 80% yields, and the resulting diastereomeric imides separated by silica gel column chromatography. They were hydrolysed and recyclised to the chiral anhydrides, in `one-pot' with 10% NaOH-EtOH, followed by treatment with 2 M HCl, in similar to 40% yields. The titled anhydrides were thus obtained in homochiral form, in enantiomeric purities (generally) of similar to 90% as indicated by chiral HPLC. The chiral anhydrides were also converted to the corresponding imides (presumably stereospecifically), by treatment with ammonia solution in excellent yields. The crystal structure of one of the above diastereomeric imides (derived from 6-phenylfulvene) was determined, and based on the known (S)-configuration of the naphthylethylamine moiety, the `configurations' of the original anhydride adducts were assigned. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
[EN] A review focused on recent advances in intramolecular aza-Wittig reaction of phosphazenes with several carbonyl or analogous compounds is reported. Phosphazenes afford intramolecular aza-Wittig reaction with different groups within the molecule as aldehydes, ketones, esters, thioesters, amides, anhydrides and sulfimides. One of the most important applications of this reaction is the synthesis of a wide range of heterocyclic compounds, ranging from simple monocyclic compounds to complex polycyclic and macrocyclic systems.
Resumo:
This thesis describes the preparation, characterization, and application of welldefined single-component group ten salicylaldimine complexes for the polymerization of ethylene to high molecular weight materials as well as the copolymerization of ethylene and functionalized olefins. After an initial introduction to the field, Chapter 2 describes the preparation of PPh3 complexes that contain a series of modified salicylaldimine and naphthaldimine ligands. Such complexes were activated for polymerization by the addition of cocatalysts such as Ni(COD)2 or B(C6F5)3. As the steric demand of the ligand set increased-the molecular weight, polymerization activity, and lifetime of the catalyst was observed to increase. In fact, complexes containing "bulky" ligands, such as the [Anthr,HSal] ligand (2.5), were found to be highly-active single component complexes for the polymerization of ethylene. Model hydrido compound were prepared-allowing for a better understanding of both the mechanism of polymerization and one mode of decomposition.
Chapter 3 describes the effect which additives play on neutral NiII polymerization catalysts such as 2.5. The addition of excess ethers, esters, ketones, anhydrides, alcohols, and water do not deactivate the catalysts for polymerization. However, the addition of excess acid, thiols, and phosphines was observed to shut-down catalysis. Since excess phosphine was found to inhibit catalysis, "phosphine-free" complexes, such as the acetonittile complex (3.26), were prepared. The acetonitrile complex was found to be the most active neutral polymerization catalyst prepared to date.
Chapter 4 outlines the use of catalyst 2.5 and 3.26 for the preparation of linear functionalized copolymers containing alcohols, esters, anhydrides, and ethers. Copolymers can be prepared with γ-functionalized-α-olefins, functionalized norbornenes, and functionalized tricyclononenes, with up to 30 mol% comonomer incorporation.
Chapter 5 outlines the preparation of a series of PtII alkyl/olefin salicylaldimine complexes which serve as models for the active species in the NiII-catalyzed polymerization process. Understanding the nature of the M-olefin interaction as a the electronic and steric properties of the salicylaldimine ligand is varied has allowed for a number of predictions about the design of future polymerization systems.
Resumo:
聚酞亚胺作为一类最重要的耐热高分子,具有广泛的应用领域。但较高的合成成本使其不能象聚烯烃类高分子材料一样被广泛应用。本工作的目的是以氯代苯配‘和二胺为原料,制备双氯代酞酰亚胺单体,然后进行聚酞亚胺合成方法的研究,以达到减少合成步骤,降低其生产成本的目的,主要内容如下:1)由双氯代酞酞亚胺与双酚A在不同体系中进行(亲核取代)聚合反应,发现双酚是否完全成盐和聚合体系含水量是决定聚合物分子量的关键因素。所得聚合物比浓对数乳度在0.5 dL/g以上,并且试验重现性好。2)尝试以无水Na2S为缩合剂,与双氯代酞酞亚胺直接合成聚硫醚酞亚胺及双氯代酞酞亚肢和4,4-二氯二苯酮或4,4-二氯二苯矾合成聚硫(醚酞亚胺一酮)或聚硫(醚酞亚胺一矾),由于高纯的无水Na2S难于获得。因此聚合物的分子量较低。3)通过对微波和常规两种加热条件下聚合反应条件的对比。发现微波辐照聚合反应可以大大减少聚合反应的时间,并相应提高聚合物的分子量。4)由氯代苯配与二胺缩合合成了对称双氯单体,通过Ni催化偶联反应合成了一系列联苯型聚酰亚胺。与传统的由氯代苯配合成联苯二配相比,减少2-4步合成反应。由含有侧基的二胺合成的双(4-氯代酞酞亚胺)单体经催化偶联聚合获得了高分子量的聚酞亚胺,而由刚性直链二胺合成!)勺双(4-氯代酞酞亚服)单体生成的聚合物由于溶解性差,所以分子量较低。而双(3-氯代酞酰亚胺)单体聚合生成了大量的齐聚物而导致分子量较低。5)建立了一种合成不对称双氯代酞酞亚胺简易的方法。6)由不刘”称双氯单体合成的联苯型聚酰亚胺具有良好的溶解性和成膜性。应用13C NMR谱对其联苯结构单元的组成进行分析的结果表明:2,3,3',4-双亚胺:2,2',3,3,-双亚胺:3,4,3·,4'-双亚胺=58.0: 21.0:21.0。与其它同分异构聚酞亚胺酞比,由不对称单体合成的聚酞亚胺具有最高的玻璃化转变温度。
Resumo:
In the past decades, 4-phenylethynyl phthalic anhydride (4-PEPA) has been the most important endcapper used for thermoset polyimide. As the isomer of 4-PEPA, 3-phenylethynyl phthalic anhydride (3-PEPA) has attracted our interest. In this article, 3-PEPA was synthesized and a comparative study with 4-PEPA on curing temperature, curing rate, thermal and mechanical properties of oligomers and cured polymers was presented. The new phenylethynyl endcapped model compound, N-phenyl-3-phenylethynyl phthalimide, was synthesized and characterized.
Resumo:
A one-pot synthesis method for the preparation of polyimides containing biphenyl units was developed via nickel-catalyzed coupling reaction of bis(chlorophthalimide)s which were prepared from chloroplithalic anhydrides and diamines in xylene. The resulting polyimides had inherent viscosities of above 0.60dL g(-1). In the meantime, the copolymerizations from a mixture of three isomeric bis(chlorophthalimide)s gave the polymers with inherent viscosities of 0.36-0.55 gdL(-1). The solubility and film formability of the copolymers were better than those of homopolymers from bis(4-chlorophthalimide). The 10% weight loss of these polyimides was between 470 and 531 degrees C.
Resumo:
This review deals with polyimides based on isomeric dianhydrides and diamines, and with chiral polyimides. First, however, a summary is presented of recent work on the synthesis of isomeric dianhydrides, the reaction of mellophanic dianhydride with diamines, and the tendency toward cyclization in reactions of some dianhydrides and diamines. Then turning to polymers, the discussion covers solubility, thermal and dielectric properties, permeability and permselectivity for gas separation, and rheology of isomeric polyimides. Several useful general rules have been found: i.e. the glass transition temperature of polyimides based on isomeric dianhydrides with a given diamine decreases in the order 3,3'- > 3,4'- > 4,4-dianhydride if the polymers are of comparable molecular weight, whereas the thermal stability and the T-beta/T-g ratio (in absolute temperatures) increase in the order of 3,3'- < 3,4'- < 4,4'-dianhydride. Polyimides from 3,3'- or 3,4'-dianhydride have higher solubility than those from 4,4'-dianhydride. Polyimides from 3,4'-dianhydrides exhibit much lower melt viscosity than those from the other isomeric anhydrides. The dielectric constants of polyimides derived from m,m'-diamines are lower than those from p,p'-diamines. Polyimides based on 3,3'- or 3,4'-dianhydrides have higher permeability and slightly lower permselectivity than polyimides based on 4,4'-dianhydrides.
Resumo:
3,3-Dichloro-N,N'-biphthalimide (3,3'-DCBPI), 3,4'-dichloro-N,N'-biphthalimide (3,4'-DCBPI), and 4,4'-dichloro-N,N'X-biphthalimide (4,4'-DCBPI) were synthesized from 3- or 4-chlorophthalic anhydrides and hydrazine in glacial acetic acid. The yield of 3,3'-DCBPI (90%) was much higher than that of 4,4'-DCBPI (33%) because of the better stability of the intermediate, 3-chloro-N-aminophthalimide, and 3,3'-DCBPI. A series of hydrazine-based polyimides were prepared from isomeric DCBPIs and 4,4-thiobisbenzenethiol (TBBT) in N,N-dimethylacetamide in the presence of tributylamine. Inherent viscosity of these polymers was in the range of 0.51-0.69 dL/g in 1-methyl-2-pyrrolidinone (NMP) at 30 degrees C. These polyimides were soluble in 1,1,2,2-terachloroethane, NMP, and phenols. The 5% weight-loss temperatures (T(g)s) of the polymers were near 450 degrees C in N-2. Their glass-transition temperatures (T(g)s) determined by dynamic mechanical thermal analysis and differential scanning calorimetry increased according to the order of polyimides based on 4,4'-DCBPI, 3,4'-DCBPI, and 3,3'-DCBPI. The hydrolytic stability of these polymers was measured under acid, basic, and neutral conditions and the results indicated that the order was 3,3'-DCBPI/TBBT > 3,4'-DCBPI/TBBT > 4,4'-DCBPI/TBBT.
Resumo:
A new method for synthesis of novel hyperbranched poly(ester-amide)s from commercially available AA' and CBx type monomers has been developed on the basis of a series of model reactions. The hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by thermal polycondensation of carboxyl anhydrides (AA') and multihydroxyl primary amine (CBx) without any catalyst and solvent. The reaction mechanism in the initial stage of polymerization was investigated with in situ H-1 NMR. In the initial stage of the reaction, primary amino groups of 2-amino-2-ethyl-1,3-propanediol (AEPO) or tris(hydroxymethyl)aminomethane (THAM) react rapidly with anhydride, forming an intermediate which can be considered as a new AB(x) type monomer. Further self-polycondensation reactions of the AB. molecules produce hyperbranched polymers. Analysis using H-1 and C-13 NMR spectroscopy revealed the degree of branching of the resulting polymers ranging from 0.36 to 0.55. These hyperbranched poly(ester-amide)s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy, possess high molecular weights with broad distributions and display glass-transition temperatures (T(g)s) between 7 and 96 degreesC.