999 resultados para ANFIS. Controle linear. Identificação de sistemas lineares. Múltiplos modelos
Resumo:
In this work a modification on ANFIS (Adaptive Network Based Fuzzy Inference System) structure is proposed to find a systematic method for nonlinear plants, with large operational range, identification and control, using linear local systems: models and controllers. This method is based on multiple model approach. This way, linear local models are obtained and then those models are combined by the proposed neurofuzzy structure. A metric that allows a satisfactory combination of those models is obtained after the structure training. It results on plant s global identification. A controller is projected for each local model. The global control is obtained by mixing local controllers signals. This is done by the modified ANFIS. The modification on ANFIS architecture allows the two neurofuzzy structures knowledge sharing. So the same metric obtained to combine models can be used to combine controllers. Two cases study are used to validate the new ANFIS structure. The knowledge sharing is evaluated in the second case study. It shows that just one modified ANFIS structure is necessary to combine linear models to identify, a nonlinear plant, and combine linear controllers to control this plant. The proposed method allows the usage of any identification and control techniques for local models and local controllers obtaining. It also reduces the complexity of ANFIS usage for identification and control. This work has prioritized simpler techniques for the identification and control systems to simplify the use of the method
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Qualquer tarefa motora ativa se dá pela ativação de uma população de unidades motoras. Porém, devido a diversas dificuldades, tanto técnicas quanto éticas, não é possível medir a entrada sináptica dos motoneurônios em humanos. Por essas razões, o uso de modelos computacionais realistas de um núcleo de motoneurônios e as suas respectivas fibras musculares tem um importante papel no estudo do controle humano dos músculos. Entretanto, tais modelos são complexos e uma análise matemática é difícil. Neste texto é apresentada uma abordagem baseada em identificação de sistemas de um modelo realista de um núcleo de unidades motoras, com o objetivo de obter um modelo mais simples capaz de representar a transdução das entradas do núcleo de unidades motoras na força do músculo associado ao núcleo. A identificação de sistemas foi baseada em um algoritmo de mínimos quadrados ortogonal para achar um modelo NARMAX, sendo que a entrada considerada foi a condutância sináptica excitatória dendrítica total dos motoneurônios e a saída foi a força dos músculos produzida pelo núcleo de unidades motoras. O modelo identificado reproduziu o comportamento médio da saída do modelo computacional realista, mesmo para pares de sinal de entrada-saída não usados durante o processo de identificação do modelo, como sinais de força muscular modulados senoidalmente. Funções de resposta em frequência generalizada do núcleo de motoneurônios foram obtidas do modelo NARMAX, e levaram a que se inferisse que oscilações corticais na banda-beta (20 Hz) podem influenciar no controle da geração de força pela medula espinhal, comportamento do núcleo de motoneurônios até então desconhecido.
Resumo:
The education designed and planned in a clear and objective manner is of paramount importance for universities to prepare competent professionals for the labor market, and above all can serve the population with an efficient work. Specifically, in relation to engineering, conducting classes in the laboratories it is very important for the application of theory and development of the practical part of the student. The planning and preparation of laboratories, as well as laboratory equipment and activities should be developed in a succinct and clear way, showing to students how to apply in practice what has been learned in theory and often shows them why and where it can be used when they become engineers. This work uses the MATLAB together with the System Identification Toolbox and Arduino for the identification of linear systems in Linear Control Lab. MATLAB is a widely used program in the engineering area for numerical computation, signal processing, graphing, system identification, among other functions. Thus the introduction to MATLAB and consequently the identification of systems using the System Identification Toolbox becomes relevant in the formation of students to thereafter when necessary to identify a system the base and the concept has been seen. For this procedure the open source platform Arduino was used as a data acquisition board being the same also introduced to the student, offering them a range of software and hardware for learning, giving you every day more luggage to their training
Resumo:
The education designed and planned in a clear and objective manner is of paramount importance for universities to prepare competent professionals for the labor market, and above all can serve the population with an efficient work. Specifically, in relation to engineering, conducting classes in the laboratories it is very important for the application of theory and development of the practical part of the student. The planning and preparation of laboratories, as well as laboratory equipment and activities should be developed in a succinct and clear way, showing to students how to apply in practice what has been learned in theory and often shows them why and where it can be used when they become engineers. This work uses the MATLAB together with the System Identification Toolbox and Arduino for the identification of linear systems in Linear Control Lab. MATLAB is a widely used program in the engineering area for numerical computation, signal processing, graphing, system identification, among other functions. Thus the introduction to MATLAB and consequently the identification of systems using the System Identification Toolbox becomes relevant in the formation of students to thereafter when necessary to identify a system the base and the concept has been seen. For this procedure the open source platform Arduino was used as a data acquisition board being the same also introduced to the student, offering them a range of software and hardware for learning, giving you every day more luggage to their training
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
A maioria dos métodos de síntese e sintonia de controladores, bem como métodos de otimização e análise de processos necessitam de um modelo do processo em estudo. A identificação de processos é portanto uma área de grande importância para a engenharia em geral pois permite a obtenção de modelos empíricos dos processos com que nos deparamos de uma forma simples e rápida. Mesmo não utilizando leis da natureza, os modelos empíricos são úteis pois descrevem o comportamento específico de determinado processo. Com o rápido desenvolvimento dos computadores digitais e sua larga aplicação nos sistemas de controle em geral, a identificação de modelos discretos foi amplamente desenvolvida e empregada, entretanto, modelos discretos não são de fácil interpretação como os modelos contínuos pois a maioria dos sistema com que lidamos são de representação contínua. A identificação de modelos contínuos é portanto útil na medida que gera modelos de compreensão mais simples. A presente dissertação estuda a identificação de modelos lineares contínuos a partir de dados amostrados discretamente. O método estudado é o chamado método dos momentos de Poisson. Este método se baseia em uma transformação linear que quando aplicada a uma equação diferencial ordinária linear a transforma em uma equação algébrica evitando com isso a necessidade do cálculo das derivadas do sinais de entrada e saída Além da análise detalhada desse método, onde demonstramos o efeito de cada parâmetro do método de Poisson sobre o desempenho desse, foi realizado também um estudo dos problemas decorrentes da discretização de sinais contínuos, como por exemplo o efeito aliasing decorrente da utilização de tempos de amostragem muito grandes e de problemas numéricos da identificação de modelos discretos utilizando dados com tempos de amostragem muito pequenos de forma a destacar as vantagens da identificação contínua sobre a identificação discreta Também foi estudado um método para compensar a presença de offsets nos sinais de entrada e saída, método esse inédito quando se trata do método dos momentos de Poisson. Esse trabalho também comprova a equivalência entre o método dos momentos de Poisson e uma metodologia apresentada por Rolf Johansson em um artigo de 1994. Na parte final desse trabalho são apresentados métodos para a compensação de erros de modelagem devido à presença de ruído e distúrbios não medidos nos dados utilizados na identificação. Esses métodos permitem que o método dos momentos de Poisson concorra com os métodos de identificação discretos normalmente empregados como por exemplo ARMAX e Box-Jenkins.
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This paper presents a methodology for solving a set of linear sparse equations on vector computers. The new methodology is able to exploit the matrix and vector sparsities. The implementation was made on a CRAY Y-MP 2E/232 computer and the results were taken from electric power systems with 118, 320, 725 and 1729 buses. The proposed methodology was compared with three previous methods and the results show the superior performance of the new one.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)