970 resultados para ANESTHETICS, Volatile: sevoflurane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backgrounds and Objectives: Both continuous venous anesthesia with propofol and inhalational anesthesia with sevoflurane propitiate fast arousal with few side effects. The aim of this study was to compare the arousal and post anesthestic recovery times in patients submitted to these two agents. Methods: Forty three patient aged 18 to 50 years, physical status I or II, submitted to gynecological laparoscopy were distributed in two groups: G1 - propofol in continuous infusion of 115 μg.kg -1.min -1 and G2 sevoflurane. All the patients were pre-medicated with 7.5 mg midazolam, sufentanil 0.5 μg.kg -1, propofol 2 mg.kg -1, atracurium 0.5 mg.kg -1, N 2O in 50% of oxygen in a no-rebreathing system. The depth of the anesthesia and arousal time were assessed by the Bispectral index (BIS). The time between end of anesthesia and eye opening, time for command response and time for orientation were also evaluated. Results: The times recorded in minutes were: G1 - eye opening 8.2 ± 2.9, command response 8.6 ± 3.1, orientation 9.8 ± 3.4, recovery 31.6 ± 3.8; G2 - eye opening 4.5 ± 3, command response 4.9 ± 3.4, orientation 6.2 ± 3.4, recovery 66 ± 8. Except the recovery time, all the values were larger in G1. Conclusions: Both intravenous propofol or inhalational sevoflurane were considered excellent anesthetic techniques as to recovery time and recovery room discharge. Sevoflurane provided an earlier arousal with a longer recovery room stay as compared to propofol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives - Sevoflurane is an inhalational anesthetic drug with low blood/gas solubility providing fast anesthesia induction and emergence. Its ability to maintain cardiovascular stability makes it ideal for pediatric anesthesia. The aim of this study was to evaluate hemodynamic stability, consumption of inhalational anesthetics and emergence time in children with and without premedication (midazolam or clonidine) anesthetized with sevoflurane titrated according to BIS monitoring. Methods - Participated in this study 30 patients aged 2 to 12 years, physical status ASA I, undergoing elective surgeries who were divided into 3 groups: G1 - without premedication, G2 - 0.5 mg.kg-1 oral midazolam, G3 - 4 μg.kg-1 oral clonidine 60 minutes before surgery. All patients received 30 μg.kg-1 alfentanil, 3 mg.kg-1 propofol, 0.5 mg.kg-1 atracurium, sevoflurane in different concentrations monitored by BIS (values close to 60) and N2O in a non rebreathing system. Systolic and diastolic blood pressure, heart rate, expired sevoflurane concentration (EC), sevoflurane consumption (ml.min-1) and emergence time were evaluated. Emergence time was defined as time elapsed between the end of anesthesia and patients' spontaneous movements trying to extubate themselves, crying and opening eyes and mouth. Results - There were no differences among groups as to systolic and diastolic blood pressure, EC, sevoflurane consumption and emergence time. Heart rate was lower in G3 group. Conclusions - Sevoflurane has provided hemodynamic stability. Premedication with clonidine and midazolam did not influence emergence time, inhaled anesthetic consumption or maintenance of anesthesia with sevoflurane. Anesthesia duration has also not influenced emergence time. Hypnosis monitoring was important for balancing anesthetic levels and this might have been responsible for the similarity of emergence times for all studied groups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gastrointestinal tract is one of the first organs affected by hypoperfusion during hemorrhagic shock. The hemodynamics and oxygen transport variables during hemorrhagic shock and resuscitation can be affected by the anesthetics used. In a model of pressure-guided hemorrhagic shock in dogs, we studied the effects of three halogenated anesthetics - halothane, sevoflurane, and isoflurane - at equipotent concentrations on gastric oxygenation. Thirty dogs were anesthetized with 1.0 minimum alveolar anesthetic concentration (MAC) of either halothane, sevoflurane, or isoflurane. A gastric tonometer was placed in the stomach to determine mucosal gastric CO2 (PgCO(2)) and for the calculation of gastric-arterial PCO2 gradient (PCO2 gap). The dogs were splenectomized and hemorrhaged to hold mean arterial pressure at 40-50 mm Hg over 45 min and then resuscitated with the shed blood volume. Hemodynamics, systemic oxygenation, and PCO2 gap were measured at baseline, after 45 min of hemorrhage, and at 15 and 60 min after blood resuscitation. Hemorrhage induced reductions of mean arterial pressure and cardiac index, while systemic oxygen extraction increased (p < .05), without significant differences among groups (p > .05). Halothane group showed significant lower PCO2 gap values than the other groups (p < .05). After 60 min of shed blood replacement, all groups restored hemodynamics, systemic oxygenation, and PCO2 gap to the prehemorrhage levels (p > .05), without significant differences among groups (p > .05). We conclude that halothane is superior to preserve the gastric mucosal perfusion in comparison to isoflurane and sevoflurane, in dogs submitted to pressure-guided hemorrhagic shock at equipotent doses of halogenated anesthetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Objectives - It is essential to reduce health care costs without impairing the quality of care. Propofol is associated to faster recovery and it is known that post-anesthesia care unit (PACU) costs are high. The aim of this study was to evaluate the advantages of two anesthesia regimens - propofol continuous infusion or isoflurane - taking into account the cost of both techniques on PACU stay. Methods - Forty seven patients, physical status ASA I, II and III, undergoing laparoscopic cholecystectomy were divided into 2 groups according to the anesthetic agent: G1, conventional propofol continuous infusion (100-150 μg.kg-1.min-1) and G2, isoflurane. All patients were induced with sufentanil (1 μg.kg-1) and propofol (2 mg.kg-1) and were kept in a re-inhalation circuit (2 L.min-1 of fresh gas flow) with 50% N2O in O2, sufentanil (0.01 μg.kg-1.min-1) and atracurium (0.5 mg.kg-1), or pancuronium (0.1 mg.kg-1) for asthma patients. All patients received atropine and neostigmine at the end of the surgery. Prophylactic ondansetron, dipyrone and tenoxican were administered and, when necessary, tramadol and N-butylscopolamine. Costs of anesthetic drugs (COST), total PACU stay (t-PACU), and PACU stay after extubation (t-EXT) were computed for both groups. Results - Costs were significantly lower in the isoflurane group but t-PACU was 26 minutes longer and t-EXT G1

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts the rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies (delta Hact) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2,-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: In(rate, rat liver microsomes) = 44.99 - 1.79(delta Hact), r2 = 0.86; In(rate, human CYP2E1) = 46.99 - 1.77(delta Hact), r2 = 0.97 (rates are in nmol of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86. To our knowledge, these are the first in vivo human metabolic rates to be quantitatively predicted. Furthermore, this is one of the first examples where computational predictions and in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anestheticsrnsevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) inrnmurine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression ofrnZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled corticalrnimpact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours afterrnexposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthyrnmice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water contentrnincreased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expressionrnwas significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analysesrnrevealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The studyrndemonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed tornmodulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence thernbarrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Futurernresearch is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cardiopulmonary effects of desflurane and sevoflurane anesthesia were compared in cats breathing spontaneously. Heart (HR) and respiratory (RR) rates; systolic (SAP), diastolic (DAP) and mean arterial (MAP) pressures; partial pressure of end tidal carbon dioxide (PETCO(2)), arterial blood pH (pH), arterial partial pressure of oxygen (PaO(2)) and carbon dioxide (PaCO(2)); base deficit (BD), arterial oxygen saturation (SaO(2)) and bicarbonate ion concentration (HCO(3)) were measured. Anesthesia was induced with propofol (8 +/- 2.3 mg/kg IV) and maintained with desflurane (GD) or sevoflurane (GS), both at 1.3 MAC. Data were analyzed by analysis of variance (ANOVA), followed by the Tukey test (P < 0.05). Both anesthetics showed similar effects. HR and RR decreased when compared to the basal values, but remained constant during inhalant anesthesia and PETCO(2) increased with time. Both anesthetics caused acidemia and hypercapnia, but BD stayed within normal limits. Therefore, despite reducing HR and SAP (GD) when compared to the basal values, desflurane and sevoflurane provide good stability of the cardiovascular parameters during a short period of inhalant anesthesia (T20-T60). However, both volatile anesthetics cause acute respiratory acidosis in cats breathing spontaneously. (c) 2004 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some properties of the volatile anesthetics, such as vasodilatation and myocardial depression, combined with the sympathetic inhibition that alpha 2-agonists can produce may determine hemodynamic alterations during aortic, surgery. The interaction between dexmedetomidine (DEX), an alpha 2-agonist, and sevoflurane during aortic surgery is unknown. We studied the effects of DEX on hemodynamics and systemic oxygenation during aortic cross-clamping (Aox) and unclamping (UAox) in sevoflurane-anesthetized dogs Twenty dogs were. anesthetized with sevoflurane and were randomly assigned to two groups prior to Aox and UAox: control, n = 10, received saline infusion only, and DEX (1 mu g.kg(-1) load followed by 1 mu g.kg(-1).h(-1) infusion), n = 10. Hemodynamic and oxygenation variables were measured at baseline, after saline or DEX loading dose, 20 and 40 min after Aox, and 20 and 40 min after UAox. After DEX administration, heart rate, cardiac index l and systemic oxygen transport index (131021) were lower than in control group. Aox increased mean arterial pressure (MAP) and systemic vascular resistance index (SVRI) in both groups, but the effects were greater with DEX. Cl, heart rate, and DO(2)I were lower, while central venous pressure (CVP) and pulmonary artery occlusion pressure were higher in DEX compared to control. After UAox, MAP, CVP and SVRI were maintained higher in DEX in relation to control. We conclude that in sevoflurane-anesthetized dogs DEX alters the cardiovascular response during aortic surgery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The Anesthetic Conserving Device (AnaConDa) uncouples delivery of a volatile anesthetic (VA) from fresh gas flow (FGF) using a continuous infusion of liquid volatile into a modified heat-moisture exchanger capable of adsorbing VA during expiration and releasing adsorbed VA during inspiration. It combines the simplicity and responsiveness of high FGF with low agent expenditures. We performed in vitro characterization of the device before developing a population pharmacokinetic model for sevoflurane administration with the AnaConDa, and retrospectively testing its performance (internal validation). MATERIALS AND METHODS: Eighteen females and 20 males, aged 31-87, BMI 20-38, were included. The end-tidal concentrations were varied and recorded together with the VA infusion rates into the device, ventilation and demographic data. The concentration-time course of sevoflurane was described using linear differential equations, and the most suitable structural model and typical parameter values were identified. The individual pharmacokinetic parameters were obtained and tested for covariate relationships. Prediction errors were calculated. RESULTS: In vitro studies assessed the contribution of the device to the pharmacokinetic model. In vivo, the sevoflurane concentration-time courses on the patient side of the AnaConDa were adequately described with a two-compartment model. The population median absolute prediction error was 27% (interquartile range 13-45%). CONCLUSION: The predictive performance of the two-compartment model was similar to that of models accepted for TCI administration of intravenous anesthetics, supporting open-loop administration of sevoflurane with the AnaConDa. Further studies will focus on prospective testing and external validation of the model implemented in a target-controlled infusion device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To examine the influence of continuing administration of sevoflurane or isoflurane during reversal of rocuronium induced neuromuscular block with neostigmine. Methods: One hundred and twenty patients, divided into three equal groups, were randomly allocated to maintenance of anesthesia with sevoflurane, isoflurane or propofol. Neuromuscular block was induced with rocuronium and monitored using train-of-four (TOF) stimulation of the ulnar nerve and recording the force of contraction of the adductor pollicis muscle. Neostigmine was administered when the first response in TOF had recovered to 25%. At this time the volatile agent administration was stopped or propofol dosage reduced in half the patients in each group (n = 20 in each group). The times to attain TOF ratio of 0.8, and the number of patients attaining this end point within 15 min were recorded. Results: The times (mean ± SD) to recovery of the TOF ratio to 0.8 were 12.0 ± 5.5 and 6.8 ± 2.3 min in the sevoflurane continued and sevoflurane stopped groups, 9.0 ± 8.3 and 5.5 ± 3.0 min in the isoflurane continued and isoflurane stopped groups, and 5.2 ± 2.8 and 4.7 ±1.5 min in the propofol continued and propofol stopped groups (P <0.5- 01). Only 9 and 15 patients in the sevoflurane and isoflurane continued groups respectively had attained a TOF ratio of 0.8 within 15 min (P <0.001 for sevoflurane). Conclusions: The continued administration of sevoflurane, and to a smaller extent isoflurane, results in delay in attaining adequate antagonism of rocuronium induced neuromuscular block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Volatile anesthetics such as isoflurane and halothane have been in clinical use for many years and represent the group of drugs most commonly used to maintain general anesthesia. However, despite their widespread use, the molecular mechanisms by which these drugs exert their effects are not completely understood. Recently, a seemingly paradoxical effect of general anesthetics has been identified: the activation of peripheral nociceptors by irritant anesthetics. This mechanism may explain the hyperalgesic actions of inhaled anesthetics and their adverse effects in the airways. METHODS: To test the hypothesis that irritant inhaled anesthetics activate the excitatory ion-channel transient receptor potential (TRP)-A1 and thereby contribute to hyperalgesia and irritant airway effects, we used the measurement of intracellular calcium concentration in isolated cells in culture. For our functional experiments, we used models of isolated guinea pig bronchi to measure bronchoconstriction and withdrawal threshold to mechanical stimulation with von Frey filaments in mice. RESULTS: Irritant inhaled anesthetics activate TRPA1 expressed in human embryonic kidney cells and in nociceptive neurons. Isoflurane induces mechanical hyperalgesia in mice by a TRPA1-dependent mechanism. Isoflurane also induces TRPA1-dependent constriction of isolated bronchi. Nonirritant anesthetics do not activate TRPA1 and fail to produce hyperalgesia and bronchial constriction. CONCLUSIONS: General anesthetics induce a reversible loss of consciousness and render the patient unresponsive to painful stimuli. However, they also produce excitatory effects such as airway irritation and they contribute to postoperative pain. Activation of TRPA1 may contribute to these adverse effects, a hypothesis that remains to be tested in the clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Com este estudo objetivou-se avaliar, comparativamente, os efeitos de três anestésicos inalatórios sobre variáveis respiratórias e hemogasométricas em cães. Para tal, utilizaram-se 30 cães sadios, adultos, machos e fêmeas evitando-se aquelas em estro ou em gestação. Os animais foram separados e protocolados em três grupos de 10 cães cada (G1, G2 e G3). Induziu-se a anestesia geral com administração intravenosa de propofol, na dose de 10±1,3 mg/kg. em seguida procedeu-se à intubação orotraqueal e anestesia geral inalatória pelo desfluorano (G1), sevofluorano (G2) e isofluorano (G3), diluídos em oxigênio a 100,00%, por meio de circuito anestésico tipo semi-fechado, dotado de vaporizadores calibrados para cada agente anestésico. As variáveis estudadas foram Freqüência Respiratória, CO2 ao Final da Expiração, Saturação de Oxihemoglobina, Volume Corrente, Volume Minuto, Pressão Parcial Arterial de O2, Pressão Parcial Arterial de CO2, Excesso de Bases e pH. A avaliação estatística destas variáveis foi realizada pela Análise de Perfil, sendo considerado o nível de significância de 5,00%. Os resultados obtidos permitiram concluir que o desfluorano deprime o sistema respiratório aumentando a pressão parcial arterial de CO2 e o CO2 ao final da expiração; e diminuindo a pressão parcial arterial de O2 e o volume minuto, quando comparado com os outros anestésicos em teste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To compare the cardiorespiratory changes induced by equipotent concentrations of halothane (HAL), isoflurane (ISO) and sevollurane (SEVO) before and after hemorrhage.Study design. Prospective, randomized clinical trial.Animals. Twenty-four healthy adult dogs weighing 15.4 +/- 3.4 kg (mean +/- SD).Methods. Animals were randomly allocated to one of three groups (n = 8 per group). In each group, anesthesia was maintained with 1.5 minimum alveolar concentration of HAL (1.3%), ISO (1.9%,) and SEVO (3.5%) in oxygen. Controlled ventilation was performed to maintain eucapnia. Cardiorespiratory variables were evaluated at baseline (between 60 and 90 minutes after induction), immediately after and 30 minutes after the withdrawal of 32 mL kg(-1) of blood (400% of the estimated blood volume) over a 30-minute period.Results. During baseline conditions, ISO and SEVO resulted in higher cardiac index (CI) than HAL. Heart rates were higher with SEVO at baseline. while mean arterial pressure (MAP) and mean pulmonary arterial pressure did not differ between groups. Although heart rate values were higher for ISO and SEVO after hemorrhage, only ISO resulted in a higher CI when compared with HAL. In ISO-anesthetized dogs, MAP was higher immediately after hemorrhage, and this was related to better maintenance of CI and to an increase in systemic vascular resistance index from baseline.Conclusions. Although the hemodynamic responses of ISO and SEVO are similar in normovolaemic dogs, ISO results in better maintenance of circulatory function during the early period following a massive blood loss. Clinical relevance Inhaled anesthetics should be used judiciously in animals presented with blood loss. However, if an inhalational agent is to be used under these circumstances, ISO may provide better hemodynamic stability than SEVO or HAL.