996 resultados para AMPLIFIED SAMPLE INJECTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel method that applies pressure-assisted field-amplified sample injection with reverse migrating micelles (PA-FASI-RMM) for the online concentration of neutral analytes in MEKC with a low-pH BGE. After injection of a plug of water into the separation capillary, negative voltage and positive pressure were simultaneously applied to initialize PA-FASI-RMM injection. The hydrodynamic flow generated by the positive pressure compensated the reverse EOF in the water plug and allowed the water plug to remain in the capillary during FASI with reverse migrating micelles (FASI-RMM) to obtain a much longer injection time than usual, which improved stacking efficiency greatly. Equations describing this injection mode were introduced and were supported by experimental results. For a 450-s online PA-FASI-RMM injection, three orders of magnitude sample enhancement in terms of peak area could be observed for the steroids and an achievement of detection limits was between 1 and 10 ng/mL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been developed for determining of heavy metal ions by field-amplified sample injection capillary electrophoresis with contactless conductivity detection. The effects of the 2-N-morpholinoethanesulfonic acid/histidine (MES/His) concentration in the sample matrix, the injection time and organic additives on the enrichment factor were studied. The results showed that MES/His with a low concentration in the sample matrix, an increase of the injection time and the addition of acetonitrile improved the enrichment factor. Four heavy metal ions (Zn2+, Co2+, Cu2+ and Ni2+) were dissolved in deionized water, separated in a 10 mM MES/His running buffer at pH 4.9 and detected by contactless conductivity detection. The detection sensitivity was enhanced by about three orders of magnitude with respect to the non-stacking injection mode. The limits of detection were in the range from 5 nM (Zn2+) to 30 nM (Cu2+). The method has been used to determine heavy metal ions in tap water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Threo-methylphenidate is a chiral psychostimulant drug widely prescribed to treat attention-deficit hyperactivity disorder in children and adolescents. An enantioselective CE-based assay with head-column field-amplified sample stacking for analysis of threo-methylphenidate enantiomers in liquid/liquid extracts of oral fluid is described. Analytes are electrokinetically injected across a short water plug placed at the capillary inlet and become stacked at the interface between plug and buffer. Enantiomeric separation occurs within a few minutes in a pH 3.0 phosphate/triethanolamine buffer containing 20 mg/mL (2-hydroxypropyl)-β-CD as chiral selector. The assay with six point multilevel internal calibration provides a linear response for each enantiomer in the 10-200 ng/mL concentration range, is simple, inexpensive, and reproducible, and has an LOQ of 5 ng/mL. It was applied to oral fluid patient samples that were collected up to 12 h after intake of an immediate release tablet and two different extended release formulations with racemic methylphenidate. Drug profiles could thereby be assessed in a stereoselective way. Almost no levorotary threo-methylphenidate enantiomer was detected after intake of the two extended release formulations, whereas this enantiomer was detected during the first 2.5 h after intake of the immediate release preparation. The noninvasive collection of oral fluid is an attractive alternative to plasma for the monitoring of methylphenidate exposure in the pediatric community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) with Ru(bpy)(3)(2+) electrochemiluminescence. (ECL) detection system was established to the determination of contamination of banknotes with controlled drugs and a high efficiency on-column field-amplified sample stacking (FASS) technique was also optimized to increase the ECL intensity. The method was illustrated using heroin and cocaine, which are two typical and popular illicit drugs. Highest sample stacking was obtained when 0.01 mM acetic acid was chosen for sample dissolution with electrokinetical injection for 6 s at 17 kV. Under the optimized conditions: ECL detection at 1.2 V, separation voltage 10.0 kV, 20 mM phosphate-acetate (pH 7.2) as running buffer, 5 mM Ru(bpy)(3)(2+) with 50 mM phosphate-acetate (pH 7.2) in the detection cell, the standard curves were linear in the range of 7.50 x 10(-8) to 1.00 x 10(-5) M for heroin and 2.50 x 10(-7) to 1.00 x 10(-4) M for cocaine and detection limits of 50 nM for heroin and 60 nM for cocaine were achieved (S/N = 3), respectively. Relative standard derivations of the ECL intensity and the migration time were 3.50 and 0.51% for heroin and 4.44 and 0.12% for cocaine, respectively.The developed method was successfully applied to the determination of heroin and cocaine on illicit drug contaminated banknotes without any damage of the paper currency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Counter-pressure was used to extend the duration of field-amplified sample injection in isotachophoresis (FASI-ITP) in order to improve the detection of bacterial cells. Using 0.51-μm negatively charged encapsulated fluorescent beads as a model, the counter-pressure, injection and separation voltages, and times were optimized. Using 6-min 8,963-Pa counter-pressure FASI-ITP injections at −12 kV followed by mobilization of the ITP band with continued injection at −6 kV, the limit of detection (LOD) for Escherichia coli was improved to 78 cells/mL, a factor of 4 when compared with FASI-ITP without counter-pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An apparatus including a rotary-type injector was designed for quantitative sample injection in capillary electrophoresis (CE), in which both pressurized flow and electroosmotic flow were used to drive the background electrolyte solution. A relative standard deviation of peak area of lower than 1% was achieved by using this apparatus. The effects of back-pressure regulator, restrictor, and applied voltage on separation efficiency and resolution were investigated. The utility of this apparatus in both micro-HPLC and pressurized capillary electrochromatography (pCEC) was also demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of arsenic species by large-volume field amplified stacking injection-capillary zone electrophoresis (LV-FASI-CZE) is reported in this paper. Whole column injection was employed. The optimum buffer pH for the separation of weak acids was discussed. It was found that the optimum buffer to analyze the stacked arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA) was 25 mm phosphate at pH 6.5. However, the optimum buffer to analyze the concentrated arsenite (As(III)) was 20 mm phosphate - 10 mm borate at pH 9.28. The limits of detection of the method developed were 0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA. An enrichment factor of 34-100 for several arsenic species was obtained. In the end, this method was applied to determine the arsenic concentration in the environmental reference materials to show the usefulness of the method developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a new method to determine the chemical composition of magnetic ferrite nanoparticles by the slurry injection technique using the inductively coupled plasma optical emission spectroscopy. In this way, experimental conditions such as aerosol gas flow rate and colloidal stability were optimized in order to use aqueous calibration curves in the slurry nebulization and to determine the chemical composition of a series of sols containing chemically synthesized size-tailored NiFe 2O 4 nanograms. Then, the results of direct sampling and those of conventional aqueous introduction analysis are compared, showing the efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we report an approach for protein detection enhanced by ionic liquid (IL) selectors in capillary electrophoresis (CE), with avidin as a model protein. Hydrophilic ILs were added into the running buffer of CE and acted as selectors for sample injection, enriching the positive target and excluding the negative from the capillary. When using 3% (v/v) IL selector, the detection sensitivity of avidin was improved by over one order of magnitude, while the interference from protein adsorption was effectively avoided, even in an uncoated capillary. The electrochemiluminescence method was initially used for IL-based CE with low noise that was independent of the IL concentration, making ILs almost transparent as additives in the electrophoresis buffer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances and key strategies in capillary electrophoresis and microchip CE with electrochemical detection (ECD) and electrochemiluminescence (ECL) detection are reviewed. This article consists of four main parts: CE-ECD; microchip CE-ECD; CE-ECL; and microchip CE-ECL. It is expected that ECD and ECL will become powerful tools for CE microchip systems and will lead to the creation of truly disposable devices. The focus is on papers published in the last two years (from 2005 to 2006).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method involving self-concentration, on-column enrichment and field-amplified sample stacking for on-line concentration in capillary electrochromatography with a polymer monolithic column is presented. Since monolithic columns eliminate the frit fabrication and the problems associated with frits, the experimental conditions could be more flexibly adjusted to obtain higher concentration factor in comparison with conventional particulate packed columns. With self-concentration effect, the detection sensitivity of benzene and hexylbenzene is improved by a factor of 4 and 8, respectively. With on-column enrichment and ultralong injection, improvement as high as 22 000 times in detection sensitivity of benzoin is achieved. Furthermore, a combination of the three above-mentioned methods yields up to a 24000-fold improvement in detection sensitivity for caffeine, a charged compound. Parameters affecting the efficiency of on-line concentration are investigated systematically. In addition, equations describing on-line concentration process are deduced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we described a simple and rapid method, capillary electrophoresis with electrochemiluminescence (CE-ECL) detection using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)), to simultaneously detect pethidine and methadone. Analytes were injected to separation capillary of 67.5 cm length (25 mu m i.d., 360 mu m o.d.) by electrokinetic injection for 10 s at 10 kV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A calibration method was developed using flow injection analysis (FI) with a Gradient Calibration Method (GCM). The method allows the rapid determination of zinc In foods (approximately 30 min) after treatment with concentrated sulphuric acid and 30% hydrogen peroxide, and analysis with flame atomic absorption spectrometry (FAAS). The method provides analytical results with a relative standard deviation of about 2% and requires less time than by conventional FI calibration. The electronic selection of different segments along the gradient and monitoring of the technique covers wide concentration ranges while maintaining the inherent high precision of flow injection analysis. Concentrations, flow rates, and flow times of the reagents were optimized in order to obtain best accuracy and precision. Flow rates of 10 mL/min were selected for zinc. In addition, the system enables electronic dilution and calibration where a multipoint curve can be constructed using a single sample injection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chelates formed between the heavy metal ion Pb(II) and the reagents 8-hydroxy-5-quinolinesulphonic acid, 8-hydroxy-7-quinolinesulphonic acid and 8-hydroxy-7-iodo-5-quinolinesulphonic acid exhibit strong room temperature phosphorescence (RTP) if retained on the surface of anion exchange resin beads. Based on the on-line formation, in a flow-injection system, of such RTP lead chelates and their transient immobilization on an anion exchange resin, three flow-through optosensing systems are investigated for lead in sea water. Optimum experimental conditions and the analytical performance characteristics of the three optosensors are discussed. Relative standard deviations (RSDs) of the order of 3% are typical at 100 ng ml−1 Pb(II) and the active sensing phases can easily be regenerated by passing 500 μl of 6 M hydrochloric acid. A lead(II) detection limit of 0.1 ng ml−1 (3×background SD, for 2 ml sample injection volumes) was achieved for the optosensor based on 8-hydroxy-7-quinolinesulphonic acid. Possible interferences present in sea water, including cations and anions which could affect the sensor response, are discussed in detail. Finally, the selected RTP flow-through optical sensor has been successfully tested for the determination of lead in sea water at a few ng ml−1.