980 resultados para ALPHA-3-BETA-4
Resumo:
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer`s disease, on currents elicited by activation of rat alpha(3)beta(4) nAChR heterologously expressed in KX alpha(3)beta(4)R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 +/- 0.2 mu M and 4.3 +/- 1.3 for the channel opening equilibrium constant, Phi(-1). Experiments were performed to investigate whether tacrine is able to activate the alpha(3)beta(4) nAChR. Tacrine did not activate whole-cell currents in KX alpha(3)beta(4)R2 cells but inhibited receptor activity at submicromolar concentration. Dose response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 mu M. The increase of Phi(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) have been studied in detail with regard to their interaction with therapeutic and drug addiction-related compounds. Using a structureactivity approach, we have examined the relationship among the molecular features of a set of eight para-R-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides, structurally related to procaine and their affinity for the a3 beta 4 nAChR heterologously expressed in KXa3 beta 4R2 cells. Affinity values (log[1/IC50]) of these compounds for the a3 beta 4 nAChR were determined by their competition with [3H]TCP binding. Log(1/IC50) values were analyzed considering different hydrophobic and electronic parameters and those related to molar refractivity. These have been experimentally determined or were taken from published literature. In accordance with literature observations, the generated cross-validated quantitative structureactivity relationship (QSAR) equations indicated a significant contribution of hydrophobic term to binding affinity of procaine analogs to the receptor and predicted affinity values for several local anesthetics (LAs) sets taken from the literature. The predicted values by using the QSAR model correlated well with the published values both for neuronal and for electroplaque nAChRs. Our work also reveals the general structure features of LAs that are important for interaction with nAChRs as well as the structural modifications that could be made to enhance binding affinity. (c) 2012 Wiley Periodicals, Inc.
Resumo:
We have previously shown that human papillomavirus virus-like particles (VLPs) are able to activate the Ras/MAP kinase pathway. Ras can also elicit an anti-apoptotic signal via PI3-kinase so we investigated this further. Here we show that binding of VLPs from HPV types 6b, 18, 3 1, 35 and BPV1 results in activation of PI3-kinase. Activation was achieved by either L1 or L1/L2 VLPs and was dependent on both VLP-cell interaction and correct conformation of the virus particle. VLP-induced PI3-kinase activity resulted in efficient downstream signaling to Akt and consequent phosphorylation of FKHR and GSK3 beta. We also present evidence that PV signaling is activated via the alpha 6 beta 4 integrin. These data suggest that papillomaviruses use a common receptor that is able to signal through to Ras. Combined activation of the Ras/MAP kinase and PI3-kinase pathways may be beneficial for the virus by increasing cell numbers and producing an environment more conducive to infection. (c) 2006 Elsevier Inc. All rights reserved
Resumo:
We have isolated and characterized ol-conotoxin EpI, a novel sulfated peptide from the venom of the molluscivorous snail, Conus episcopatus, The peptide was classified as an cy-conotoxin based on sequence, disulfide connectivity, and pharmacological target. EpI has ho mology to sequences of previously described cu-conotoxins, particularly PnIA, PnIB, and ImI, However, EpI differs from previously reported conotoxins in that it has a sulfotyrosine residue, identified by amino acid analysis and mass spectrometry, Native EpI was shown to coelute with synthetic EpI, The peptide sequence is consistent with most, but not all, recognized criteria for predicting tyrosine sulfation sites in proteins and peptides, The activities of synthetic EpI and its unsulfated analogue [Tyr(15)]EpI were similar. Both peptides caused competitive inhibition of nicotine action on bovine adrenal chromaffin cells (neuronal nicotinic ACh receptors) but had no effect on the rat phrenic nerve-diaphragm (muscle nicotinic ACh receptors), Both EpI and [Tyr(15)]EpI partly inhibited acetylcholine-evoked currents in isolated parasympathetic neurons of rat intracardiac ganglia, These results indicate that EPI and [Tyr(15)]EpI selectively inhibit alpha 3 beta 2 and alpha 3 beta 4 nicotinic acetylcholine receptors.
Resumo:
Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha 3 beta 2 and alpha 3 beta 4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr(15)]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr(15)]EpI solved at a resolution of 1.1 Angstrom using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo try direct methods. The [Tyr(15)]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr(15)]EpI, PnIA, PnIB, and MII, have an alpha 4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr(15)]EpI has the same backbone fold as the other alpha 4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr(15)]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr(15)]EpI and MII may have different binding modes for the same receptor subtype.
Resumo:
The activity of alpha-conotoxin (alpha-CTX) lml, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX lml was a potent inhibitor of the neuronal[ nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 mu M, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. (alpha-CTX lml also inhibited nicotine-evoked Ca-45(2+) uptake but not Ca-45(2+) uptake stimulated by 56 mM Kr. In contrast, alpha-CTX lml had no effect at the neuromuscular junction over the concentration range 1-20 mu M. Bovine chromaffin cells are known to contain the alpha 3 beta 4, alpha 7, and (possibly) alpha 3 beta 4 alpha 5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha 7 nicotinic receptors are not involved. We propose that alpha-CTX lml interacts selectively with the functional (alpha 3 beta 4 or alpha 3 beta 4 alpha 5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.
Resumo:
The alpha-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) antagonists, are emerging as important probes of the role played by different nAChR subtypes in cell function and communication, In this study, the native alpha-conotoxins PnIA and PnIB were found to cause concentration-dependent inhibition of the ACh-induced current in all rat parasympathetic neurons examined, with IC50 values of 14 and 33 nM, and a maximal reduction in current amplitude of 87% and 71%, respectively. The modified alpha-conotoxin [N11S]PnIA reduced the ACh-induced current with an IC50 value of 375 nM and a maximally effective concentration caused 91% block, [A10L]PnIA was the most potent inhibitor, reducing the ACh-induced current in similar to 80% of neurons, with an IC50 value of 1.4 nM and 46% maximal block of the total current, The residual current was not inhibited further by alpha-bungarotoxin, but was further reduced by the cu-conotoxins PnIA or PnIB, and by mecamylamine. H-1 NMR studies indicate that PnIA, PnIB, and the analogues, [A10L]PnIA and [N11S]PnIA, have identical backbone structures. We propose that positions 10 and II of PnIA and PnIB influence potency and determine selectivity among alpha 7 and other nAChR subtypes, including alpha 3 beta 2 and alpha 3 beta 4, Four distinct components of the nicotinic ACh-induced current in mammalian parasympathetic neurons have been dissected with these conopeptides.
Resumo:
Recently, corticosteroid hormone-induced factor (CHIF) and the gamma-subunit, two members of the FXYD family of small proteins, have been identified as regulators of renal Na,K-ATPase. In this study, we have investigated the tissue distribution and the structural and functional properties of FXYD7, another family member which has not yet been characterized. Expressed exclusively in the brain, FXYD7 is a type I membrane protein bearing N-terminal, post-translationally added modifications on threonine residues, most probably O-glycosylations that are important for protein stabilization. Expressed in Xenopus oocytes, FXYD7 can interact with Na,K-ATPase alpha 1-beta 1, alpha 2-beta 1 and alpha 3-beta 1 but not with alpha-beta 2 isozymes, whereas, in brain, it is only associated with alpha 1-beta isozymes. FXYD7 decreases the apparent K(+) affinity of alpha 1-beta 1 and alpha 2-beta 1, but not of alpha 3-beta1 isozymes. These data suggest that FXYD7 is a novel, tissue- and isoform-specific Na,K-ATPase regulator which could play an important role in neuronal excitability.
Resumo:
Using assay-directed fractionation of the venom from the vermivorous cone snail Conus planorbis, we isolated a new conotoxin, designated p114a, with potent activity at both nicotinic acetylcholine receptors and a voltage-gated potassium channel subtype. p114a contains 25 amino acid residues with an amidated C-terminus, an elongated N-terminal tail (six residues), and two disulfide bonds (1-3, 2-4 connectivity) in a novel framework distinct from other conotoxins. The peptide was chemically synthesized, and its three-dimensional structure was demonstrated to be well-defined, with an R-helix and two 3(10)-helices present. Analysis of a cDNA clone encoding the prepropeptide precursor of p114a revealed a novel signal sequence, indicating that p114a belongs to a new gene superfamily, the J-conotoxin superfamily. Five additional peptides in the J-superfamily were identified. Intracranial injection of p114a in mice elicited excitatory symptoms that included shaking, rapid circling, barrel rolling, and seizures. Using the oocyte heterologous expression system, p114a was shown to inhibit both a K+ channel subtype (Kv1.6, IC50) 1.59 mu M) and neuronal (IC50 = 8.7 mu M for alpha 3 beta 4) and neuromuscular (IC50 = 0.54 mu M for alpha 1 beta 1 is an element of delta) subtypes of the nicotinic acetylcholine receptor ( nAChR). Similarities in sequence and structure are apparent between the middle loop of p114a and the second loop of a number of alpha-conotoxins. This is the first conotoxin shown to affect the activity of both voltage-gated and ligand-gated ion channels.
Resumo:
The high efficient palladium-catalyzed Suzuki-Miyaura reactions of potassium aryltrifluoroborates 3 with 5-iodo-1,3-dioxin-4-ones 2a-b in water as only solvent in the presence of n-Bu(4)NOH as base is reported. The respective 5-aryl-1,3-dioxin-4-ones 4a-n were obtained in good to excellent yields. The catalyst system provides high efficiency at low load using electronically diverse coupling partners. The obtained 2,2,6-trimethyl-5-aryl-1,3-dioxin-4-ones were transformed into corresponding alpha-aryl-beta-ketoesters 6 by reaction with an alcohol in the absence of solvent. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A simple protocol for the Pd(OAc)(2)-catalyzed cross-coupling reaction of 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones with potassium aryltrifluoroborates was developed. The reaction is performed at 110 degrees C with a ligand-free catalyst. In all cases, complete conversion of the 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones and aryltrifluoroborates into the C-C coupling products was observed within 30-360 min. It is noteworthy that a large variety of groups present in the potassium aryltrifluoroborates (-CF(3), -OMe, -SEt, -CN, -CHO, -Cl, -Cbz, -NCbz, -OH, -CO(2)H) could be tolerated. Hydrogenation of the endocyclic double bonds in the Suzuki-Miyaura products followed by acid hydrolysis afforded highly enantioenriched alpha-aryl-substituted beta-amino acids.
Resumo:
The ADAM23 gene is frequently silenced in different types of tumors, and, in breast tumors, silencing is correlated with tumor progression, suggesting that it might be associated with the acquisition of a metastatic phenotype. ADAM23 exerts its function mainly through the disintegrin domain, because its metalloprotease domain is inactive. Analysis of ADAM23 binding to integrins has revealed a specific interaction with alpha(v)beta(3) integrin mediated by the disintegrin domain. Altered expression of alpha(v)beta(3) integrin has been observed in different types of tumors, and expression of this integrin in the activated form has been shown to promote metastasis formation. Here, we investigated the possibility that interaction between ADAM23 and alpha(v)beta(3) integrin might negatively modulate alpha(v)beta(3) activation during metastatic progression. ADAM23 expression was knocked down using short hairpin RNA in the MDA-MB-435 cell line, which has been extensively used as a model for alpha(v)beta(3) integrin activation. Ablation of ADAM23 enhanced alpha(v)beta(3) integrin activation by at least 2- to 4-fold and ADAM23 knockdown cells showed enhanced migration and adhesion to classic alpha(v)beta(3) integrin ligands. Ablation of ADAM23 expression also enhanced pulmonary tumor cell arrest in immunodeficient mice. To complement our findings with clinical evidence, we showed that silencing of ADAM23 gene by DNA promoter hypermethylation in a collection of 94 primary breast tumors was significantly associated with lower distant metastases-free and disease-specific survivals and was an independent prognostic factor for poor disease outcome. Our results strongly support a functional role of ADAM23 during metastatic progression by negatively modulating alpha(v)beta(3) integrin activation. [Cancer Res 2009;69(13):5546-52]
Resumo:
We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1 alpha. and HNF-3 beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12 h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1 alpha and HNF-3 beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3 beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1 alpha expression and activity to levels of non-diabetic rats, whereas HNF-3 beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1 alpha and HNF-3 beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1 alpha and HNF-3 beta activity. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The codon usage of a hybrid bacterial gene encoding a thermostable (1,3-1,4)-beta-glucanase was modified to match that of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene. Both the modified and unmodified bacterial genes were fused to a DNA segment encoding the barley high-pI alpha-amylase signal peptide downstream of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene promoter. When introduced into barley aleurone protoplasts, the bacterial gene with adapted codon usage directed synthesis of heat stable (1,3-1,4)-beta-glucanase, whereas activity of the heterologous enzyme was not detectable when protoplasts were transfected with the unmodified gene. In a different expression plasmid, the codon modified bacterial gene was cloned downstream of the barley high-pI alpha-amylase gene promoter and signal peptide coding region. This expression cassette was introduced into immature barley embryos together with plasmids carrying the bar and the uidA genes. Green, fertile plants were regenerated and approximately 75% of grains harvested from primary transformants synthesized thermostable (1,3-1,4)-beta-glucanase during germination. All three trans genes were detected in 17 progenies from a homozygous T1 plant.