985 resultados para ALMOST-PERIODIC SOLUTIONS
Resumo:
A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C(0)-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.
Resumo:
In several systems, the physical parameters of the system vary over time or operating points. A popular way of representing such plants with structured or parametric uncertainties is by means of interval polynomials. However, ensuring the stability of such systems is a robust control problem. Fortunately, Kharitonov's theorem enables the analysis of such interval plants and also provides tools for design of robust controllers in such cases. The present paper considers one such case, where the interval plant is connected with a timeinvariant, static, odd, sector type nonlinearity in its feedback path. This paper provides necessary conditions for the existence of self sustaining periodic oscillations in such interval plants, and indicates a possible design algorithm to avoid such periodic solutions or limit cycles. The describing function technique is used to approximate the nonlinearity and subsequently arrive at the results. Furthermore, the value set approach, along with Mikhailov conditions, are resorted to in providing graphical techniques for the derivation of the conditions and subsequent design algorithm of the controller.
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.
Resumo:
We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.
Resumo:
ABSTRACT: In this work we are concerned with the existence and uniqueness of T -periodic weak solutions for an initial-boundary value problem associated with nonlinear telegraph equations typein a domain. Our arguments rely on elliptic regularization technics, tools from classical functional analysis as well as basic results from theory of monotone operators.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper we present a spectral criterion for existence of mean-periodic solutions of retarded functional differential equations with a time-independent main part.
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.