30 resultados para ALKYLBENZENES
Resumo:
The surface tensions of binary mixtures of 1-alkanols (Cl-Cd with benzene, toluene, or xylene were measured. The results were correlated with the activity coefficients calculated through the group contribution method such as UNIFAC, with the maximum deviation from the experimental results less that 5%. The coefficients of the correlation are correlated with the chain length.
Resumo:
Incubations of several polycyclic heteroaromatic compounds and two polycyclic aromatic hydrocarbons with a series of common fungi have been performed. The fungi Cunninghamella elegans ATCC 26269, Rhizopus arrhizus ATCC 11145, and Mortierella isabellina NRRL 1757 were studied in this regard. Of the aza heteroaromatics, only dibenzopyrrole gave a ring hydroxylated product following the incubation with C. elegans. From the thio heteroaromatics studied, dibenzothiophene was metabolized by all the three fungi and thioxanthone by C. elegans and M. isabellina giving sulfones and sulphoxides. Thiochromanone was metabolized stereoselectively to the corresponding sulphoxide by C. elegans. Methyl substituted thioxanthones on incubation with C. elegans produced oxidative products, arising from S -oxidation and hydroxylation at the methyl group. Of the cyclic ketones studied, only fluorenone was reduced to hydroxyfluorene and this metabolism is compared with that reported with cytochrome P-450 monooxygenases of hepatic microsomes. A series of para-substituted ethylbenzenes has been transformed stereoselectively to the 1-phenylethanols by incubation with M. isabellina. Comparisons of the enantiomeric purities obtained from products with their respective para substituent of the same steric size but different electronic properties indicate that the stereoselectivity of hydroxylation at benzylic carbon may be susceptible to electron donating or withdrawing factors in some cases, but that observation is not va lid in all the comparisons. The stereochemistry of the reaction is discussed in terms of three possible steps, ethylbenzene ---) 1-phenylethanol ---) acetophenone ---) 1-phenylethanol. This metabolic pathway could account for the inconsistencies observed in the comparisons of optical purities and electronic character of para substituents. Furthermore, formation of 2-phenylethanol (in some cases), l-(p-acetylphenyl)ethanol from p-diethylbenzene, and N-acetylation of p-ethylaniline was observed. n-Propylbenzene was also converted to optically active 1-phenylpropanol. Acetophenone, p-ethylacetophenone, and o(,~,~-trifluoroacetophenone were transformed to 1-phenylethanol, l-(p-ethylphenyl)ethanol, and 1-phenyl-2,2,2-trifluoroethanol, respectively, with high chemical and excellent optical yields. The 13 C NMR spectra of several substrates and metabolic products have been reported and assigned for the first time.
Resumo:
Linear alkylbenzenes, LAB, formed by the Alel3 or HF catalyzed alkylation of benzene are common raw materials for surfactant manufacture. Normally they are sulphonated using S03 or oleum to give the corresponding linear alkylbenzene sulphonates In >95 % yield. As concern has grown about the environmental impact of surfactants,' questions have been raised about the trace levels of unreacted raw materials, linear alkylbenzenes and minor impurities present in them. With the advent of modem analytical instruments and techniques, namely GCIMS, the opportunity has arisen to identify the exact nature of these impurities and to determine the actual levels of them present in the commercial linear ,alkylbenzenes. The object of the proposed study was to separate, identify and quantify major and minor components (1-10%) in commercial linear alkylbenzenes. The focus of this study was on the structure elucidation and determination of impurities and on the qualitative determination of them in all analyzed linear alkylbenzene samples. A gas chromatography/mass spectrometry, (GCIMS) study was performed o~ five samples from the same manufacturer (different production dates) and then it was followed by the analyses of ten commercial linear alkylbenzenes from four different suppliers. All the major components, namely linear alkylbenzene isomers, followed the same elution pattern with the 2-phenyl isomer eluting last. The individual isomers were identified by interpretation of their electron impact and chemical ionization mass spectra. The percent isomer distribution was found to be different from sample to sample. Average molecular weights were calculated using two methods, GC and GCIMS, and compared with the results reported on the Certificate of Analyses (C.O.A.) provided by the manufacturers of commercial linear alkylbenzenes. The GC results in most cases agreed with the reported values, whereas GC/MS results were significantly lower, between 0.41 and 3.29 amu. The minor components, impurities such as branched alkylbenzenes and dialkyltetralins eluted according to their molecular weights. Their fragmentation patterns were studied using electron impact ionization mode and their molecular weight ions confirmed by a 'soft ionization technique', chemical ionization. The level of impurities present i~ the analyzed commercial linear alkylbenzenes was expressed as the percent of the total sample weight, as well as, in mg/g. The percent of impurities was observed to vary between 4.5 % and 16.8 % with the highest being in sample "I". Quantitation (mg/g) of impurities such as branched alkylbenzenes and dialkyltetralins was done using cis/trans-l,4,6,7-tetramethyltetralin as an internal standard. Samples were analyzed using .GC/MS system operating under full scan and single ion monitoring data acquisition modes. The latter data acquisition mode, which offers higher sensitivity, was used to analyze all samples under investigation for presence of linear dialkyltetralins. Dialkyltetralins were reported quantitatively, whereas branched alkylbenzenes were reported semi-qualitatively. The GC/MS method that was developed during the course of this study allowed identification of some other trace impurities present in commercial LABs. Compounds such as non-linear dialkyltetralins, dialkylindanes, diphenylalkanes and alkylnaphthalenes were identified but their detailed structure elucidation and the quantitation was beyond the scope of this study. However, further investigation of these compounds will be the subject of a future study.
Resumo:
This paper reports the reconstruction of the contamination history of a large South American industrial coastal area (Santos Estuary, Brazil) using linear alkylbenzenes (LABs). Three sediment cores were dated by (137)Cs Concentrations in surficial layers were comparable to the midrange concentrations reported for coastal sediments worldwide LAB concentrations increased towards the surface. indicating increased waste discharges into the estuary in recent decades. The highest concentration values occurred in the early 1970s, a time of intense industrial activity and marked population growth. The decreased LAB concentration, in the late 1970s was assumed to be the result of the world oil crisis Treatment of industrial effluents, which began in 1984, was represented by decreased LAB levels Microbial degradation of LABs may be more intense in the industrial area sediments. The results show that industrial and domestic waste discharges are a historical problem in the area. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A capillary electrochromatography (CEC) monolithic column with zwitterionic stationary phases was prepared by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, methacrylic acid, and 2-(dimethyl amino) ethyl methacrylate in the presence of porogens. The stationary phases have zwitterionic functional groups, that is, both tertiary amine and acrylic acid groups, so the ionization of those groups on the zwitterionic stationary phase was affected by the pH values of the mobile phase, and further affects the strength and direction of the electroosmotic flow (EOF). Separations of alkylbenzenes and polycylic aromatic hydrocarbons based on the hydrophobic mechanism were obtained. Separation of various types of polar compounds, including phenols, anilines, and peptides, on the prepared column were performed under CEC mode with anodic and cathodic EOF, and different separation selectivities of those polar analytes were observed on the monolithic capillary column by using mobile phases with different pH values.
Resumo:
Recent advances in the gas - phase reaction of aromatics with cationic electrophiles are reviewed. The overall substitution reaction is analyzed in terms of its elementary steps. Mechanistic studies have been focused on the structure and reactivity of covalent and non - covalent ionic intermediates, which display a rich chemistry and provide benchmark reactivity models. Particular attention has been devoted to proton transfer reactions, which may occur intra or intermolecularly in arenium intermediates.
Resumo:
A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.
Resumo:
A new kind of monolithic capillary electrochromatography column with poly(styrene-co-divinylbenzene-co-methacrylic acid) as the stationary phase has been developed. The stationary phase was found to be porous by scanning electron microscopy and the composition of the continuous bed was proved by IR spectroscopy to be the ternary polymer of styrene, divinylbenzene, and methacrylic acid. The effects of operating parameters, such as voltage, electrolyte, and organic modifier concentration in the mobile phase on electroosmotic flow were studied systematically, The retention mechanism of neutral solutes on such a column proved to be similar to that of reversed-phase high performance liquid chromatography. In addition, fast analyses of phenols, chlorobenzenes, anilines, isomeric compounds of phenylenediamine and alkylbenzenes within 4.5 min were achieved.
Resumo:
The applicability of ionic liquids within the nuclear industry has been investigated. The radiation stability of ionic liquids containing dialkylimidazolium cations has been tested through with alpha, beta and gamma irradiation. The results of these tests suggest that imidazolium salts have stabilities similar to alkylbenzenes and greater than tetrabutylphosphate / odorless kerosene (TBP/OK) mixtures. The oxidative dissolution of uranium dioxide and the anodic dissolution of uranium metal and plutonium metal have been carried out in various ionic liquid media (C) 2002 American Chemical Society.
Resumo:
The palladium-catalyzed hydrogenolysis of aromatic ketones to alkylbenzenes was studied in mixtures of ionic liquids to explore the promotional effect of these reaction media. Choline-based ionic liquids displayed complete miscibility with the aromatic ketone substrate at reaction temperature and a clear phase separation of the derived alkylbenzene product at room temperature. Selected ionic liquids were then assessed as reaction media in the hydrogenolysis of aromatic ketones over palladium catalysts. A binary mixture of choline and betainium bis(trifluoromethylsulfonyl)imide ionic liquids resulted in the highest conversion and selectivity values in the hydrogenolysis of acetophenone. At the end of the reaction, the immiscible alkylbenzene separates from the ionic liquid mixture and the pure product phase can be isolated by simple decantation. After optimization of the reaction conditions, high yields (>90%) of alkylbenzene were obtained in all cases. The catalyst and the ionic liquid could be used at least three times without any loss of activity or selectivity.
Resumo:
A presente dissertação, que no seu conjunto se propõe apresentar o estudo de oxidação de compostos orgânicos com peróxido de hidrogénio na presença dos aniões do tipo Keggin, mono-substituídos por MnIII e FeIII, sob a forma de sais de tetra-n-butilamónio (TBA) e suportados em matriz de sílica funcionalizada, enquanto vital método de obtenção de importante precursores de síntese orgânica, tem na sua base o trabalho de Doutoramento desenvolvido no Departamento de Química da Universidade de Aveiro. Os compostos preparados e testados em sistema homogéneo foram os sais de TBA dos aniões de Keggin, de fórmula geral [XW11M(H2O)O39]n-, onde X = P, Si ou B e M = MnIII e FeIII. Em sistema heterogéneo foram testados diferentes materiais, que diferem entre si na matriz de sílica. Assim, fez-se a heterogeneização de [PW11Fe(H2O)O39]4- em sílica funcionalizada com catiões de césio e grupos propilamónio; [BW11Fe(H2O)O39]6- e [SiW11Fe(H2O)O39]5- foram imobilizados em sílica contendo grupos aminopropilo e o anião [PW11Mn(H2O)O39]4- foi suportado em sílica quimicamente modificada com grupos alquilamónio. Os substratos orgânicos estudados incluem o 1H-indeno, 1,2-di-hidronaftaleno, etilbenzeno, cumeno, p-cimeno, sec-butilbenzeno, 1- e 2-etilnaftaleno, cis-cicloocteno e ciclooctano. Paralelamente usaram-se alguns outros substratos, quando necessário obter esclarecimentos mecanísticos. A tese assenta numa estrutura composta por 7 capítulos. Na primeira, faz-se uma abordagem aos polioxometalatos e às reacções de oxidação de hidrocarbonetos, com particular destaque no uso de polioxometalatos em catálise oxidativa e também no uso de peróxido de hidrogénio como oxidante. A eficiência catalítica dos aniões de Keggin mono substituídos por MnIII e FeIII, em sistema homogéneo foi avaliada na oxidação de compostos orgânicos característicos, nomeadamente de ciclo-alcenilbenzenos, alquilbenzenos, ciclo-alquilbenzenos e hidrocarbonetos aromáticos policíclicos com H2O2, em acetonitrilo. Os resultados destes estudos encontram-se descritos nos capítulos dois, três e quatro desta tese. Estes compostos mostraram-se catalisadores eficientes e selectivos para a oxidação de alcanos e alcenos. O quinto capítulo da tese prossegue com a síntese, caracterização e eficiência catalítica dos polioxotungstatos referidos anteriormente imobilizados numa matriz de sílica funcionalizada com iões césio (SiO2-Cs), grupos aminopropilo (SiO2–(CH2)3NH2) ou trietilpropilamónio (SiO2-(CH2)3N(Et)3). A actividade catalítica destes compostos foi estudada utilizando o cis-cicloocteno e ciclooctano como substratos padrão. A oxidação de cis-clicoocteno originou o epóxido com 100% de selectividade e o catalisador foi reutilizado durante 4 ciclos com elevada eficiência. No sexto capítulo, são descritas as metodologias experimentais de síntese dos novos compostos, as condições catalíticas, a instrumentação e demais métodos e procedimentos usados. No sétimo e último capítulo, tecem-se as conclusões finais e apresentam-se algumas perspectivas de trabalho futuro utilizando o sistema, POM/H2O2, usado neste trabalho.
Resumo:
Linear alkylbenzene sulfonic acid, the largest-volume synthetic surfactant, in addition to its excellent performance , is important due to its biodegradable environmental friendliness, as it has a straight chain and is prepared by the sulphonation of linear alkylbenzenes (LAB). To ensure environmental protection, the commercial benzene alkylation catalysts HF or AICI3 are replaced and we have developed a clean LAB production process using a pillared clay catalyst capable of not only replacing the conventional homogeneous catalyst, but also having high selectivity for the best biodegradable 2-phenyl LAB isomer .Pillared clay catalysts having high Bronsted acidity show efficient conversion in gas phase alkylation of benzene with 1-octene with a good 2-phenyl octane selectivity.
Resumo:
The aroma volatiles of walnuts from three different geographical locations were studied. Over 110 compounds were identified in the headspace volatiles, many for the first time as walnut components. Walnuts from China and the Ukraine contained high levels of lipid-derived volatiles, in particular hexanal, pentanal, 1-hexanol and 1-pentanol from linoleic acid breakdown, and 1-penten-3-ol from alpha-linolenic acid breakdown. Chilean walnuts, however, contained high levels of alkylbenzenes of molecular weight 120, with the lipid-derived aldehydes and alcohols present at much lower levels than in the other two walnut samples. The relationship between the fatty acid composition of the walnuts and their volatile composition is discussed. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)