956 resultados para ALKANEBISPHOSPHONATE THIN-FILM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cu2ZnSnS4 (CZTS) is considered to be one of the most promising light absorbing materials for low cost, high efficiency thin film solar cells. Compared to conventional CuIn(S, Se)2 (CIS) and Cu(InGa)(S,Se)2 (CIGS) as well as CdTe light absorber, CZTS is only composed of earth-abundant non-toxic elements, ensuring the price competitiveness of this kind of solar cell in the future PV market. However, the research in this area is very limited compared to CIS and CIGS. Detailed studies of both the material and the device are rare, which significantly restricts the development in this area. This paper reviews the progress in the research field of CZTS, particularly the methods which were employed to prepare CZTS absorber material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Analytical Electron Microscope (AEM), with which secondary X-ray emission from a thin (<150nm), electron-transparent material is measured, has rapidly become a versatile instrument for qualitative and quantitative elemental analyses of many materials, including minerals. With due regard for sources of error in experimental procedures, it is possible to obtain high spatial resolution (~20nm diameter) and precise elemental analyses (~3% to 5% relative) from many silicate minerals. In addition, by utilizing the orientational dependence of X-ray emission for certain multi-substituted crystal structures, site occupancies for individual elements within a unit cell can be determined though with lower spatial resolution. The relative ease with which many of these compositional data may be obtained depends in part on the nature of the sample, but, in general, is comparable to other solid state analytical techniques such as X-ray diffraction and electron microprobe analysis. However, the improvement in spatial resolution obtained with the AEM (up to two orders of magnitude in analysis diameter) significantly enhances interpretation of fine-grained assemblages in many terrestrial or extraterrestrial rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary data is presented on a detailed statistical analysis of k-factor determination for a single class of minerals (amphiboles) which contain a wide range of element concentrations. These amphiboles are homogeneous, contain few (if any) subsolidus microstructures and can be readily prepared for thin film analysis. In previous studies, element loss during the period of irradiation has been assumed negligible for the determination of k-factors. Since this phenomena may be significant for certain mineral systems, we also report on the effect of temperature on k-factor determination for various elements using small probe sizes (approx.20 nm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is one of the most promising electronic and photonic materials to date. In this work, we present an enhanced ZnO Schottky gas sensor deposited on SiC substrates in comparison to those reported previously in literature. The performance of ZnO/SiC based Schottky thin film gas sensors produced a forward lateral voltage shift of 12.99mV and 111.87mV in response to concentrations of hydrogen gas at 0.06% and 1% in air at optimum temperature of 330 ºC. The maximum change in barrier height was calculated as 37.9 meV for 1% H2 sensing operation at the optimum temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a model for thin film flow down the outside and inside of a vertical cylinder. Our focus is to study the effect that the curvature of the cylinder has on the gravity-driven instability of the advancing contact line and to simulate the resulting fingering patterns that form due to this instability. The governing partial differential equation is fourth order with a nonlinear degenerate diffusion term that represents the stabilising effect of surface tension. We present numerical solutions obtained by implementing an efficient alternating direction implicit scheme. When compared to the problem of flow down a vertical plane, we find that increasing substrate curvature tends to increase the fingering instability for flow down the outside of the cylinder, whereas flow down the inside of the cylinder substrate curvature has the opposite effect. Further, we demonstrate the existence of nontrivial travelling wave solutions which describe fingering patterns that propagate down the inside of a cylinder at constant speed without changing form. These solutions are perfectly analogous to those found previously for thin film flow down an inclined plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film supercapacitors are produced by using electrochemically exfoliated graphene (G) and wet-chemically produced graphene oxide (GO). Either G/GO/G stacked film or sole GO film are sandwiched by two Au films to make devices, where GO is the dielectric spacer. The addition of graphene film for charge storage can increase the capacitance about two times, compared to the simple Au electrode. It is found that the GO film has very high dielectric constant, accounting for the high capacitance of these devices. AC measurements reveal that the relative permittivity of GO is in the order of 104 within the frequency range of 0.1–70 Hz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the study of the effect on adding total peripheries and sharp edges to the Schottky contact as a hydrogen sensor. Schottky contact was successfully designed and fabricated as hexagon-shape. The contact was integrated together with zinc oxide thin film and tested towards 1% hydrogen gas. Simulations of the design were conducted using COMSOL Multiphysics to observe the electric field characteristic at the contact layer. The simulation results show higher electric field induced at sharp edges with 4.18×104 V/m. Current-voltage characteristic shows 0.27 V voltage shift at 40 μA biased current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.