57 resultados para AEP
Resumo:
To develop targeted methods for treating bacterial infections, the feasibility of using glycoside derivatives of the antibacterial compound L-R-aminoethylphosphonic acid (L-AEP) has been investigated. These derivatives are hypothesized to be taken up by bacterial cells via carbohydrate uptake mechanisms, and then hydrolysed in situ by bacterial borne glycosidase enzymes, to selectively afford L-AEP. Therefore the synthesis and analysis of ten glycoside derivatives of L-AEP, for selective targeting of specific bacteria, is reported. The ability of these derivatives to inhibit the growth of a panel of Gram-negative bacteria in two different media is discussed. β-Glycosides (12a) and (12b) that contained L-AEP linked to glucose or galactose via a carbamate linkage inhibited growth of a range of organisms with the best MICs being <0.75 mg/ml; for most species the inhibition was closely related to the hydrolysis of the equivalent chromogenic glycosides. This suggests that for (12a) and (12b), release of L-AEP was indeed dependent upon the presence of the respective glycosidase enzyme.
Resumo:
The deviation of calibration coefficients from five cup anemometer models over time was analyzed. The analysis was based on a series of laboratory calibrations between January 2001 and August 2010. The analysis was performed on two different groups of anemometers: (1) anemometers not used for any industrial purpose (that is, just stored); and (2) anemometers used in different industrial applications (mainly in the field—or outside—applications like wind farms). Results indicate a loss of performance of the studied anemometers over time. In the case of the unused anemometers the degradation shows a clear pattern. In the case of the anemometers used in the field, the data analyzed also suggest a loss of performance, yet the degradation does not show a clear trend. A recalibration schedule is proposed based on the observed performances variations
Resumo:
The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16 m s−1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23 m s−1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius.
Resumo:
Impreso en ángulo superior derecho: "R.E. 259"
Resumo:
Impreso en el centro superior: "R.E. 259"
Resumo:
Impreso en el ángulo superior derecho: "R. E. 259"
Resumo:
In April 2007, the Australian Learning and Teaching Council (ALTC)commissioned a study to examine the diverse approaches to ePortfolio use by students in Australian universities. The goals were to consider the scope, penetration and reasons for use of ePortfolios, and to examine the issues associated with their implementation in higher education. One of the central research activities in the project was a national audit which sought to establish a picture of current and emerging ePortfolio activities in Australian academic institutions. The data collection activities took place in late 2007 and the findings were presented and discussed in the final project report, published in October 2008. In 2010, the idea of a ‘follow up survey’ was developed. The resulting supplementary research activity was undertaken to update the data collected by the AeP project team in late 2007. The plan behind this ‘postscript to AeP’ project was to refresh the picture of ePortfolio practice in Australia by collecting new data to identify and map the use of ePortfolios in adult learning across the higher education, vocational education and training (VET) and the adult community education (ACE) sectors. The supplementary project has been referred to as the ‘AeP PS survey’.
Resumo:
Hepatitis C virus (HCV ) core (C) protein is thought to bind to viral RNA before it undergoes oligomerization leading to RNA encapsidation. Details of these events are so far unknown. The 5ʹ-terminal C protein coding sequence that includes an adenine (A)-rich tract is a part of an internal ribosome entry site(IRES). This nucleotide sequence but not the corresponding protein sequence is needed for proper initiation of translation of viral RNA by an IRES-dependent mechanism. In this study, we examined the importance of this sequence for the ability of the C protein to bind to viral RNA. Serially truncated C proteins with deletions from 10 up to 45 N-terminal amino acids were expressed in Escherichia coli, purified and tested for binding to viral RNA by a gel shift assay. The results showed that truncation of the C protein from its N-terminus by more than 10 amino acids abolished almost completely its expression in E. coli. The latter could be restored by adding a tag to the N-terminus of the protein. The tagged proteins truncated by 15 or more amino acids showed an anomalous migration in SDS-PAGE. Truncation by more than 20 amino acids resulted in a complete loss of ability of tagged C protein to bind to viral RNA. These results provide clues to the early events in the C protein - RNA interactions leading to C protein oligomerization, RNA encapsidation and virion assembly.
Resumo:
Proteases can catalyze both peptide bond cleavage and formation, yet the hydrolysis reaction dominates in nature. This presents an interesting challenge for the biosynthesis of backbone cyclized (circular) proteins, which are encoded as part of precursor proteins and require post-translational peptide bond formation to reach their mature form. The largest family of circular proteins are the plant-produced cyclotides; extremely stable proteins with applications as bioengineering scaffolds. Little is known about the mechanism by which they are cyclized in vivo but a highly conserved Asn (occasionally Asp) residue at the C terminus of the cyclotide domain suggests that an enzyme with specificity for Asn (asparaginyl endopeptidase; AEP) is involved in the process. Nicotiana benthamiana does not endogenously produce circular proteins but when cDNA encoding the precursor of the cyclotide kalata B1 was transiently expressed in the plants they produced the cyclotide, together with linear forms not commonly observed in cyclotide-containing plants. Observation of these species over time showed that in vivo asparaginyl bond hydrolysis is necessary for cyclization. When AEP activity was suppressed, either by decreasing AEP gene expression or using a specific inhibitor, the amount of cyclic cyclotide in the plants was reduced compared with controls and was accompanied by the accumulation of extended linear species. These results suggest that an AEP is responsible for catalyzing both peptide bond cleavage and ligation of cyclotides in a single processing event.
Resumo:
- Objective The aim is to identify the role and scope of Accredited Exercise Physiologist (AEP) services in the mental health sector and to provide insight as to how AEPs can contribute to the multidisciplinary mental health team. - Methods A modified Delphi approach was utilised. Thirteen AEPs with experience in mental health contributed to the iterative development of a national consensus statement. Six mental health professionals with expertise in psychiatry, mental health nursing, general practice and mental health research participated in the review process. Reviewers were provided with a template to systematically provide feedback on the language, content, structure and relevance to their professional group. - Results This consensus statement outlines how AEPs can contribute to the multidisciplinary mental health team, the aims and scope of AEP-led interventions in mental health services and examples of such interventions, the range of physical and mental health outcomes possible through AEP-led interventions and common referral pathways to community AEP services. - Outcome AEPs can play a key role in the treatment of individuals experiencing mental illness. The diversity of AEP interventions allows for a holistic approach to care, enhancing both physical and mental health outcomes.
Resumo:
Hevosen hankittu polyneuropatia (Acquired equine polyneuropathy eli AEP, ”Hattulan tauti”, ”Scandinavian knuckling syndrome”) on Skandinaviassa tavattava, uudentyyppinen hermostosairaus hevosilla. Yhteensä yli 300 hevosta on sairastunut Suomessa, Ruotsissa ja Norjassa lähes sadalla eri tallilla viimeisten kahdenkymmenen vuoden aikana. Hevosen hankitusta polyneuropatiasta tiedetään vasta melko vähän, eikä sairautta käsitteleviä julkaisuja ole kuin kolme. Hankittuun polyneuropatiaan sairastuneilla hevosilla on tyypillisenä oireena takajalkojen vuohisnivelten ylimeno eli ”knuckling”, josta seuraa kompurointia ja ataksiaa. Useimmiten vuohisnivelten ylimeno on sairastuneilla hevosilla symmetristä molemmissa takajaloissa. Ylimeno johtuu takavuohisnivelten ojentajalihasten heikkoudesta perifeeristen hermovaurioiden seurauksena. Tautitapauksia tavataan vakavuudeltaan eriasteisia. Vakavimmissa tapauksissa kliiniset oireet voivat pahentua jopa muutamassa päivässä siten, ettei hevonen kykene enää nousemaan makuulta ylös edes avustettuna ja eutanasia tulee aiheelliseksi. Lievin oirein sairastuneet hevoset parantuvat yleensä noin 5-6 kuukauden kuluessa. Hevosen hankitun polyneuropatian aiheuttaja on toistaiseksi tuntematon. Epäillään, että aiheuttaja voisi olla jonkin homeen tuottama mykotoksiini rehussa. Lisensiaatin tutkielmani keskeisin tarkoitus oli kartoittaa, miten paljon hevosen hankittua polyneuropatiaa on esiintynyt Suomessa. Suomen taudinpurkauksia ei ole aiemmin dokumentoitu muutamaa poikkeusta lukuun ottamatta. Kartoitukseen valittiin mukaan tallit, joissa epäiltiin joko hoitaneen eläinlääkärin tai tallinomistajan kuvauksen perusteella esiintyneen tyypillisiä hankittuun polyneuropatiaan viittaavia kliinisiä oireita. Polyneuropatiakartoitukseen valittuihin tallinomistajiin otettiin yhteyttä syksyllä 2009 puhelimitse soittamalla ja heille esitettiin kartoitusta varten laaditut kysymykset. Kartoituksen mukaan Suomessa on ollut 11 taudinpurkausta, jossa kyseessä on todennäköisesti ollut hevosen hankittu polyneuropatia. Taudinpurkaukset ajoittuvat vuodesta 2005 vuoteen 2009. Hevosten sairastumisprosentissa esiintyy runsaasti vaihtelua tallien välillä, mutta tyypillisesti useita saman tallin hevosia sairastuu. Sairastuneista hevosista on aineiston perusteella jouduttu lopettamaan 40 % ja 60 % on parantunut. Suomen kartoitus näyttää vahvistavan olettamusta, ettei hankitussa polyneuropatiassa ole ikä-, sukupuoli- tai rotupredilektiota. Tallit, joilla sairautta on tavattu, sijaitsevat maantieteellisesti hyvin hajanaisesti. Suomessa polyneuropatiatapauksia on ilmennyt lähes yhtä paljon syksyllä ja keväällä, kun taas Ruotsissa ja Norjassa lähes kaikki taudinpurkaukset ovat esiintyneet lopputalvella ja keväällä. Suurin osa hankittuun polyneuropatiaan sairastuneista hevosista on saanut karkearehuksi muovipaaleihin pakattua, esikuivattua säilöheinää. Kartoituksen myötä tiedetään suunnilleen, millä laajuudella hevosen hankittua polyneuropatiaa on Suomessa esiintynyt. Sairaus on toistaiseksi Suomessa melko harvinainen, mutta sitä tavataan kuitenkin lähes vuosittain. Jatkossa kartoituksen tietoja pystytään hyödyntämään epidemiologisissa tutkimuksissa sairauden aiheuttajan selvittämiseksi.
Resumo:
A hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) containing Co(II), Ni(II) and Cu(II) ions was prepared by curing N-MPGE and tetradentate Schiff base Co(II), Ni(II) and Cu(II) complexes. The curing polymerization reaction of N-MPGE with metal complexes as curing agents was studied. The cured samples were studied for thermal stability, chemical (acid/alkali/solvent) and water absorption resistance and homogeneity of the cured systems. The tetradentate Schiff base, 3-(Z)-2-piperazin-1-yl-ethylimino]-1,3-dihydro indol-2-one was synthesized by the condensation of Isatin (Indole-2, 3-dione) with 1-(2-aminoethyl)piperazine (AEP). Its complexes with Co(II), Ni(II) and Cu(II) have been synthesized and characterized by microanalysis, conductivity, Uv-Visible, FT-IR, TGA and magnetic susceptibility measurements. The spectral data revealed that the ligand acts as a neutral tetradentate Schiff base and coordinating through the azomethine nitrogen, two piperazine nitrogen atoms and carbonyl oxygen.
Resumo:
Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.
An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).
The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.
A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.
Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.
Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.
Resumo:
We simultaneously recorded auditory evoked potentials (AEP) from the temporal cortex (TCx), the dorsolateral prefrontal cortex (dPFCx) and the parietal cortex (PCx) in the freely moving rhesus monkey to investigate state-dependent changes of the AEP. AEPs obtained during passive wakefulness, active wakefulness (AW), slow wave sleep and rapid-eye-movement sleep (REM) were compared. Results showed that AEP from all three cerebral areas were modulated by brain states. However, the amplitude of AEP from dPFCx and PCx significantly appeared greater attenuation than that from the TCx during AW and REM. These results indicate that the modulation of brain state on AEP from all three cerebral areas investigated is not uniform, which suggests that different cerebral areas have differential functional contributions during sleep-wake cycle. (C) 2002 Elsevier Science Ireland Ltd.. All rights reserved.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load De ation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the fl apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and eficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same flapwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 by Nordex Energy GmbH.