969 resultados para ADAPTIVE-BEHAVIOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive behaviour is a crucial area of assessment for individuals with Autism Spectrum Disorder (ASD). This study examined the adaptive behaviour profile of 77 young children with ASD using the Vineland-II, and analysed factors associated with adaptive functioning. Consistent with previous research with the original Vineland a distinct autism profile of Vineland-II age equivalent scores, but not standard scores, was found. Highest scores were in motor skills and lowest scores were in socialisation. The addition of the Autism Diagnostic Observation Schedule (ADOS) calibrated severity score did not contribute significant variance to Vineland-II scores beyond that accounted for by age and nonverbal ability. Limitations, future directions, and implications are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, in robotics, artificial intelligence and neuroscience, there has been a focus on the study of the control or the neural system itself. Recently there has been an increasing interest in the notion of embodiment not only in robotics and artificial intelligence, but also in the neurosciences, psychology and philosophy. In this paper, we introduce the notion of morphological computation, and demonstrate how it can be exploited on the one hand for designing intelligent, adaptive robotic systems, and on the other hand for understanding natural systems. While embodiment has often been used in its trivial meaning, i.e. "intelligence requires a body", the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. Morphological computation is about connecting body, brain and environment. A number of case studies are presented to illustrate the concept. We conclude with some speculations about potential lessons for neuroscience and robotics. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We focus on the learning dynamics in multiproduct price-setting markets, where firms use past strategies and performance to adapt to the corresponding equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this road-crossing simulation study, we assessed both participant's ability to visually judge whether or not they could cross a road, and their adaptive walking behavior. To this end, participants were presented with a road inside the laboratory on which a bike approached with different velocities from different distances. Eight children aged 5-7, ten children aged 10-12, and ten adults were asked both to verbally judge whether they could cross the road, and to actually walk across the road if possible. The results indicated that the verbal judgments were not similar to judgments to actually cross the road. With respect to safety and accuracy of judgments, groups did not differ from each other, although the youngest group tended to be more cautious. All groups appeared to use a strategy to cross the road based both on the distance and the velocity of the approaching bike. Young children waited longer on the curb before crossing the road than older children and adults. All groups adjusted their crossing time to the time-to-arrival of the bike. These findings are discussed in relation to the ecological psychological approach and the putative dissociation between vision for perception (i.e. verbal judgment) and vision for action (i.e. actual crossing). (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined the course of repetitive behavior and restricted interests (RBRI) in children with and without Down syndrome (DS) over a two-year time period. Forty-two typically-developing children and 43 persons with DS represented two mental age (MA) levels: `` younger'' 2-4 years; `` older'' 5-11 years. For typically developing younger children some aspects of RBRI increased from Time 1 to Time 2. In older children, these aspects remained stable or decreased over the two-year period. For participants with DS, RBRI remained stable or increased over time. Time 1 RBRI predicted Time 2 adaptive behavior (measured by the Vineland Scales) in typically developing children, whereas for participants with DS, Time 1 RBRI predicted poor adaptive outcome (Child Behavior Checklist) at Time 2. The results add to the body of literature examining the adaptive and maladaptive nature of repetitive behavior.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an ``adaptive threshold,'' i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Locomotion is of fundamental importance in understanding adaptive behavior. In this paper we present two case studies of robot locomotion that demonstrate how higher level of behavioral diversity can be achieved while observing the principle of cheap design. More precisely, it is shown that, by exploiting the dynamics of the system-environment interaction, very simple controllers can be designed which is essential to achieve rapid locomotion. Special consideration must be given to the choice of body materials. We conclude with some speculation about the importance of locomotion for understanding cognition. © Springer-Verlag Berlin Heidelberg 2004.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiple brain maps are commonly found in virtually every vertebrate sensory system. Although their functional significance is generally relatively little understood, they seem to specialize in processing distinct sensory parameters. Nevertheless, to yield the stimulus features that ultimately elicit the adaptive behavior, it appears that information streams have to be combined across maps. Results from current lesion experiments in the electrosensory system, however, suggest an alternative possibility. Inactivations of different maps of the first-order electrosensory nucleus in electric fish, the electrosensory lateral line lobe, resulted in markedly different behavioral deficits. The centromedial map is both necessary and sufficient for a particular electrolocation behavior, the jamming avoidance response, whereas it does not affect the communicative response to external electric signals. Conversely, the lateral map does not affect the jamming avoidance response but is necessary and sufficient to evoke communication behavior. Because the premotor pathways controlling the two behaviors in these fish appear to be separated as well, this system illustrates that sensory–motor control of different behaviors can occur in strictly segregated channels from the sensory input of the brain all through to its motor output. This might reflect an early evolutionary stage where multiplication of brain maps can satisfy the demand on processing a wider range of sensory signals ensuing from an enlarged behavioral repertoire, and bridging across maps is not yet required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For robots to use language effectively, they need to refer to combinations of existing concepts, as well as concepts that have been directly experienced. In this paper, we introduce the term generative grounding to refer to the establishment of shared meaning for concepts referred to using relational terms. We investigated a spatial domain, which is both experienced and constructed using mobile robots with cognitive maps. The robots, called Lingodroids, established lexicons for locations, distances, and directions through structured conversations called where-are-we, how-far, what-direction, and where-is-there conversations. Distributed concept construction methods were used to create flexible concepts, based on a data structure called a distributed lexicon table. The lexicon was extended from words for locations, termed toponyms, to words for the relational terms of distances and directions. New toponyms were then learned using these relational operators. Effective grounding was tested by using the new toponyms as targets for go-to games, in which the robots independently navigated to named locations. The studies demonstrate how meanings can be extended from grounding in shared physical experiences to grounding in constructed cognitive experiences, giving the robots a language that refers to their direct experiences, and to constructed worlds that are beyond the here-and-now.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extant models of decision making in social neurobiological systems have typically explained task dynamics as characterized by transitions between two attractors. In this paper, we model a three-attractor task exemplified in a team sport context. The model showed that an attacker–defender dyadic system can be described by the angle x between a vector connecting the participants and the try line. This variable was proposed as an order parameter of the system and could be dynamically expressed by integrating a potential function. Empirical evidence has revealed that this kind of system has three stable attractors, with a potential function of the form V(x)=−k1x+k2ax2/2−bx4/4+x6/6, where k1 and k2 are two control parameters. Random fluctuations were also observed in system behavior, modeled as white noise εt, leading to the motion equation dx/dt = −dV/dx+Q0.5εt, where Q is the noise variance. The model successfully mirrored the behavioral dynamics of agents in a social neurobiological system, exemplified by interactions of players in a team sport.