910 resultados para ACEROLA POWDER


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this research, the drying process of acerola waste was investigated by using a spouted bed drier. The process was conducted using high density polyethylene inert particles with the objective of producing an ascorbic acid-rich final product. The fruit waste was ground and used to prepare different water-maltodextrin suspensions. Initially, fluidynamical experiments were conducted in order to evaluate the feeding effect on the spouted bed drier fluidynamics behavior. The experimental planning 23 + 3 was used to investigate the effect of the following variables: solids concentration, drying air temperature, intermittence time, production efficiency, solids retention and product losses by elutriation of fine particles on drier walls. The effect of selected independent variables on the drier stability was also evaluated based on a parameter defined as the ratio between the feed suspension volume and the total inert particles volume. Finally, the powder quality was verified in experiments with fixed feed flow and varying air drying temperature, drying air velocity and intermittence time. It was observed that the suspension interferes in the spouted bed drier fluidynamics behavior, and higher air flow is necessary to stabilize the drier. The suspension also promotes the expansion of the spouted bed diameter, decreases the solid circulation and favors the air distribution at the flush area. All variables interfere in the spouted bed performance, and the solids concentration has a major effect on the material retention and losses. The intermittence time also has great effect on the stability and material retention. When it comes to production efficiency, the main effect observed was the drying air temperature. First order models were well adjusted to retention and losses data. The acerola powder presented ascorbic acid levels around 600 to 700 mg/100g. Similar moisture and ascorbic acid levels were obtained for powders obtained by spouted bed and spray drier. However, the powder production efficiency of the spray drier was lower when compared to spouted bed drier. When it comes to energetic analysis, the spray drier process was superior. The results obtained for spouted bed drier are promising and highly dependent on the operational parameters chosen, but in general, it is inferred that this drying process is adequate for paste and suspension drying

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tropical fruit residues consisting of seeds, peels and residual pulp generated as by-products of fruit processing industry were investigated for bioactive compounds, the in vitro antioxidant capacity as well as alpha-glucosidase and alpha-amylase inhibitory activities. Cyanidin, quercetin, ellagic acid (EA) and proanthocyanidins were found in acerola, jambolan, pitanga and caja-umbu residue powders. Acerola powder had the highest phenolic content (8839.33 mg catechin equivalents (CE)/100 g) and also high-ascorbic acid (AA) concentration (2748.03 mg/100 g), followed by jambolan and pitanga. The greatest 1,1-Diphenyl-2-picrylhydrazyl (DPPH) inhibition was observed for jambolan (436.76 mmol Trolox eq/g) followed by pitanga (206.68 mmol Trolox eq/g) and acerola (192.60 mmol Trolox eq/g), while acerola had the highest ferric reducing antioxidant power (FRAP) assay result (7.87 mmol Trolox eq/g). All fruit powders exhibited enzymatic inhibition against alpha-amylase (IC50 ranging from 3.40 to 49.5 mg CE/mL) and alpha-glucosidase (IC50 ranging from 1.15 to 2.37 mg CE/mL). Therefore, acerola, jambolan and pitanga dried residues are promising natural ingredients for food and nutraceutical manufacturers, due to their rich bioactive compound content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acerola (Malpighia emarginata D.C.) is a red fruit widely cultivated in Brazil, especially in the Northeastern region. Its increasing demand is attributed to its high ascorbic acid contents. Besides ascorbic acid, widely known by its health-benefit effects, acerola is rich in anthocyanins, which contribute for the antioxidant power of the fruit. Acerola processing produces a bright-red pomace, usually discarded. The further processing of this pomace, in order to explore its antioxidant compounds, could enhance acerola market value and rentability of its processing. Both ascorbic acid and anthocyanins are highly susceptible to degradation, that can be delayed by microencapsulation, which consists on packing particles (core) in an edible matrix (wall material). This work has been made with the purpose of producing a microencapsulated acerola pomace extract, which could be used by the food industry as a functional ingredient with antioxidant and coloring properties. Antioxidant compounds were recovered by pressing the pomace diluted in a solvent (a citric acid aqueous solution), by using a central composite design, with two variables: citric acid concentration in the solvent (0-2%), and solvent: pomace mass ratio (2:1-6:1). The acerola pomace extract was then microencapsulated by spray drying. A central composite design was adopted, with three variables: inlet temperature of the spray dryer (170o-200oC), wall material: acerola solids mass ratio (2:1-5:1), and degree of maltodextrin replacement by cashew tree gum as wall material (0-100%). The cashew tree gum was used because of its similarity to arabic gum, which is regarded as the wall material by excellence. The following conditions were considered as optimal for extraction of anthocyanins and ascorbic acid: solvent/pomace ratio, 5:1, and no citric acid in the solvent. 82.47% of the anthocyanins were recovered, as well as 83.22% of the ascorbic acid. Anthocyanin and ascorbic acid retentions were favored by lower inlet temperatures, higher wall material: acerola solids mass ratio and higher maltodextrin replacement by cashew tree gum, which was presented as a promising wall material. The more adequate microencapsulation conditions, based not only on retention of antioxidant compounds but also on physical properties of the final powder, were the following: inlet temperature, 185oC; wall material: acerola solids mass ratio, 5:1, and minimum degree of maltodextrin replacement by cashew tree gum, 50%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazil, one of the largest agricultural producers in the world, has managed in recent years to significantly improve its production. However, in response to this advance in the agro-industrial sector, the generation of agro-industrial residues has also increased. New technological alternatives have to be implemented in order to bring economic and rational use of this material and drying is one of the possible choices. Considering the great importance that bioactive compounds present for food science and technology, this research aims to evaluate the air-drying process of acerola residue in a tray convective drier under controlled temperature (60, 70 e 80ºC), air velocity (4.0, 5.0 e 6.0 m/s) and material width (0.5, 0.62 e 0.75 cm) by applying an experimental planning 23 + 3. Based on that, the impact on physical-chemical characteristics, color, bioactive compounds concentration and antioxidant activity of dried acerola waste was evaluated, having the in natura and freeze dried waste as control groups. Dried acerola residue presented natural pigments, mainly carotenoids (143.68 - 68.29 mg/g) and anthocyanins (290.92 - 90.11 mg/100 g), which explain the red and yellow instrumental color parameters observed. The acerola residue powder is also rich in phenolic compounds (3261.11 -2692.60 mgGAEeq/100g), proanthocyanidins (61.33-58.46 eq/100g), ascorbic acid (389.44 739.29 mg/100 g) and DPPH antioxidant activity (20.91 24.72 μg Trolox eq/g). Results show decreased concentration of phenolic compounds, anthocyanins, carotenoids, proanthocyanidins and ascorbic acid caused by the air-drying process. However, even after the observed drying losses, the acerola residue powder can be considered a high value food ingredient, considering the high bioactive compounds concentration found in the final product, as well as the colorimetric characterization and microbiological stability of the dried powder

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Alimentos e Nutrição - FCFAR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry powder inhaler (DPI) formulations is one of the most useful aerosol preparations in which drugs may be formulated as carrier-based interactive mixtures with micronised drug particles (<5 μm) adhered onto the surface of large inert carriers (lactose powders). The addition of magnesium stearate (MgSt) (1-3), was found to increase dispersion of various drugs from DPI formulations. Recently, some active compounds coated with 5% (wt/wt) MgSt using the mechanofusion method showed significant improvements in aerosolization behavior due to the reduction in intrinsic cohesion force (4). Application of MgSt in powder formulations is not new; however, no studies demonstrated the minimum threshold level for this excipient in efficient aerosolization of drug powders from the interactive mixtures. Therefore, this study investigated the role of MgSt concentration on the efficient dispersion of salbutamol sulphate (SS) from DPI formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the factors controlling aerosolization of salbutamol sulfate (SS) from mixtures with polycaprolactone (PCL) microspheres fabricated using an emulsion technique with polyvinyl alcohol (PVA) as stabilizer. The fine particle fraction (FPF) of SS from PCL measured by a twin-stage impinger was unexpectedly found to be zero, although scanning electron microscopy showed that the drug coated the entire microsphere. Precoating the microspheres with magnesium stearate (MgSt) excipient solutions (1%–2%) significantly increased (p < 0.05, n = 5) the FPF of SS (11.4%–15.4%), whereas precoating with leucine had a similar effect (FPF = 11.3 ± 1.1%), but was independent of the solution concentration. The force of adhesion (by atomic force microscopy) between the PCL microspheres and SS was reduced from 301.4 ± 21.7 nN to 110.9 ± 30.5 nN and 121.8 ± 24.6 nN, (p < 0.05, n = 5) for 1% and 2% MgSt solutions, respectively, and to 148.1 ± 21.0 nN when coated with leucine. The presence of PVA on the PCL microspheres (detected by X-ray photoelectron spectroscopy) affected the detachment of SS due to strong adhesion between the two, presumably due to capillary forces acting between them. Precoating the microspheres with excipients increased the FPF significantly by reducing the drug–carrier adhesion. © 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:733–745, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To study the effect of the size of the surface-coated polycaprolactone (PCL) microparticle carriers on the aerosolization and dispersion of Salbutamol Sulfate (SS) from Dry Powder Inhaler (DPI) formulations. Methods: The microparticles were fabricated using an emulsion technique in four different sizes (25, 48, 104 and 150 μm) and later coated with Magnesium stearate (MgSt) and leucine. They were characterized by laser diffraction and SEM. The Fine Particle Fraction (FPF) of SS from powder mixtures was determined by a Twin Stage Impinger (TSI). Results: As the carrier size increased from 25 μm to 150 μm, the FPF of the SS delivered by the coated PCL particles increased approximately four fold. A linear relationship was found between the FPF and Volume mean Diameter (VMD) of the particles over this range. Conclusions: The dispersion behaviour of SS from PCL carriers was dependent on the inherent size of the carriers and the increased FPF of SS with increased carrier size probably reflects the higher mechanical forces produced due to the carrier-carrier collisions or collisions between the carrier particles and the internal walls of the inhaler during aerosolization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry Powder Inhaler (DPI) technology has a significant impact in the treatment of various respiratory disorders. DPI formulations consist of a micronized drug (<5ìm) blended with an inert coarse carrier, for which lactose is widely used to date. DPIs are one of the inhalation devices which are used to target the delivery of drugs to the lungs. Drug delivery via DPI formulations is influenced by the physico-chemical characteristics of lactose particles such as size, shape, surface roughness and adhesional forces. Commercially available DPI formulations, which utilise lactose as the carrier, are not efficient in delivering drug to the lungs. The reasons for this are the surface morphology, adhesional properties and surface roughness of lactose. Despite several attempts to modify lactose, the maximum efficient drug delivery to the lungs remains limited; hence, exploring suitable alternative carriers for DPIs is of paramount importance. Therefore, the objective of the project was to study the performance of spherical polymer microparticles as drug carriers and the factors controlling their performance. This study aimed to use biodegradable polymer microspheres as alternative carriers to lactose in DPIs for achieving efficient drug delivery into the lungs. This project focused on fabricating biodegradable polymer microparticles with reproducible surface morphology and particle shape. The surface characteristics of polymeric carriers and the adhesional forces between the drug and carrier particles were investigated in order to gain a better understanding of their influence on drug dispersion. For this purpose, two biodegradable polymers- polycaprolactone (PCL) and poly (DL-lactide-co-glycolide) (PLGA) were used as the carriers to deliver the anti-asthmatic drug - Salbutamol Sulphate (SS). The first study conducted for this dissertation was the aerosolization of SS from mixtures of SS and PCL or PLGA microparticles. The microparticles were fabricated using an emulsion technique and were characterized by laser diffraction for particle size analysis, Scanning Electron Microscopy (SEM) for surface morphology and X-ray Photoelectron Spectroscopy (XPS) to obtain surface elemental composition. The dispersion of the drug from the DPI formulations was determined by using a Twin Stage Impinger (TSI). The Fine particle Fraction (FPF) of SS from powder mixtures was analyzed by High Performance Liquid Chromatography (HPLC). It was found that the drug did not detach from the surface of PCL microspheres. To overcome this, the microspheres were coated with anti-adherent agents such as magnesium stearate and leucine to improve the dispersion of the drug from the carrier surfaces. It was found that coating the PCL microspheres helped in significantly improving the FPF of SS from the PCL surface. These results were in contrast to the PLGA microspheres which readily allowed detachment of the SS from their surface. However, coating PLGA microspheres with antiadherent agents did not further improve the detachment of the drug from the surface. Thus, the first part of the study demonstrated that the surface-coated PCL microspheres and PLGA microspheres can be potential alternatives to lactose as carriers in DPI formulations; however, there was no significant improvement in the FPF of the drug. The second part of the research studied the influence of the size of the microspheres on the FPF of the drug. For this purpose, four different sizes (25 ìm, 48 ìm, 100 ìm and 150 ìm) of the PCL and PLGA microspheres were fabricated and characterized. The dispersion of the drug from microspheres of different sizes was determined. It was found that as the size of the carrier increased there was a significant increase in the FPF of SS. This study suggested that the size of the carrier plays an important role in the dispersion of the drug from the carrier surface. Subsequent experiments in the third part of the dissertation studied the surface properties of the polymeric carrier. The adhesion forces existing between the drug particle and the polymer surfaces, and the surface roughness of the carriers were quantified using Atomic Force Microscopy (AFM). A direct correlation between adhesion forces and dispersion of the drug from the carrier surface was observed suggesting that adhesion forces play an important role in determining the detachment potential of the drug from the carrier surface. However, no direct relationship between the surface roughness of the PCL or PLGA carrier and the FPF of the drug was observed. In conclusion, the body of work presented in this dissertation demonstrated the potential of coated PCL microspheres and PLGA microspheres to be used in DPI formulations as an alternative carrier to sugar based carriers. The study also emphasized the role of the size of the carrier particles and the forces of interaction prevailing between the drug and the carrier particle surface on the aerosolization performances of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulmonary drug delivery is the focus of much research and development because of its great potential to produce maximum therapeutic benefit. Among the available options the dry powder inhaler (DPI) is the preferred device for the treatment of an increasingly diverse number of diseases. However, as drug delivery from a DPI involves a complicated set of physical processes and the integration of drug formulations, device design and patient usage, the engineering development of this medical technology is proving to be a great challenge. Currently there is large range of devices that are either available on the market or under development, however, none exhibit superior clinical efficacy. A major concern is the inter- and intra-patient variability of the drug dosage delivered to the deep lungs. The extent of variability depends on the drug formulation, the device design and the patient’s inhalation profile. This article reviews recent advances in DPI technology and presents the key factors which motivate and constrain the successful engineering of a universal, patient-independent DPI that is capable of efficient, reliable and repeatable drug delivery. A strong emphasis is placed on the physical processes of drug powder aerosolisation, deagglomeration, and dispersion and on the engineering of formulations and inhalers that can optimise these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The size of the carrier influences drug aerosolization from a dry powder inhaler (DPI) formulation. Lactose particles with irregular shape and rough surface in a variety of sizes are additionally used as carriers; however, contradictory reports exist regarding the effect of carrier size on the dispersion of drug. We examined the influence of the spherical particle size of the biodegradable polylactide-co-glycolide (PLGA) carrier on the aerosolization of a model drug, salbutamol sulphate (SS). Methods: Four different sizes (20-150 µm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were determined by laser diffraction and SEM, respectively. Results: The FPF was found to increase from 5.6% to 21.3% with increasing carrier sizeup to150 µm. Conclusions: The aerosolization of drug increased linearly with the size of polymer carriers. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.