933 resultados para ACCESSORY DOMAIN


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCe15A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The membrane-proximal cytoplasmic region of cytokine receptors (CRs) is highly conserved and essential for receptor activation. In particular this region is essential for the activation of members of the Janus family of protein kinases (JAK) which results in initiation of receptor signaling. We have examined the sequence of this region in a number of CR signaling and accessory subunits with a view to better delineating motifs that play an important role in initiating receptor activity. Here, we have delineated two distinct proline-rich motifs in the membrane-proximal domains of cytokine receptors. Their configuration and distribution among CR subunits strongly suggest a model in which the two motifs act in a concerted manner to induce full receptor and JAK activation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vesicular carriers for intracellular transport associate with unique sets of accessory molecules that dictate budding and docking on specific membrane domains. Although many of these accessory molecules are peripheral membrane proteins, in most cases the targeting sequences responsible for their membrane recruitment have yet to be identified. We have previously defined a novel Golgi targeting domain (GRIP) shared by a family of coiled-coil peripheral membrane Golgi proteins implicated in membrane trafficking. We show here that the docking site for the GRIP motif of p230 is a specific domain of Golgi. membranes. By immunoelectron microscopy of HeLa cells stably expressing a green fluorescent protein (GFP)-p230(GRIP) fusion protein, we show binding specifically to a subset of membranes of the trans-Golgi network (TGN). Real-time imaging of live HeLa cells revealed that the GFP-p230(GRIP) was associated with highly dynamic tubular extensions of the TGN, which have the appearance and behaviour of transport carriers. To further define the nature of the GRIP membrane binding site, in vitro budding assays were performed using purified rat liver Golgi membranes and cytosol from GFP-p230(GRIP) transfected cells. Analysis of Golgi-derived vesicles by sucrose gradient fractionation demonstrated that GFP-p230(GRIP) binds to a specific population of vesicles distinct from those labelled for beta -COP or gamma -adaptin. The GFP-p230(GRIP) fusion protein is recruited to the same vesicle population as full-length p230, demonstrating that the GRIP domain is solely proficient as a targeting signal for membrane binding of the native molecule. Therefore, p230 GRIP is a targeting signal for recruitment to a highly selective membrane attachment site on a specific population of trans-Golgi network tubulovesicular carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transfer of tumor antigen-specific T-cell receptors (TCRs) into human T cells aims at redirecting their cytotoxicity toward tumors. Efficacy and safety may be affected by pairing of natural and introduced TCRalpha/beta chains potentially leading to autoimmunity. We hypothesized that a novel single-chain (sc)TCR framework relying on the coexpression of the TCRalpha constant alpha (Calpha) domain would prevent undesired pairing while preserving structural and functional similarity to a fully assembled double-chain (dc)TCR/CD3 complex. We confirmed this hypothesis for a murine p53-specific scTCR. Substantial effector function was observed only in the presence of a murine Calpha domain preceded by a TCRalpha signal peptide for shuttling to the cell membrane. The generalization to a human gp100-specific TCR required the murinization of both C domains. Structural and functional T-cell avidities of an accessory disulfide-linked scTCR gp100/Calpha were higher than those of a dcTCR. Antigen-dependent phosphorylation of the proximal effector zeta-chain-associated protein kinase 70 at tyrosine 319 was not impaired, reflecting its molecular integrity in signaling. In melanoma-engrafted nonobese diabetic/severe combined immunodeficient mice, adoptive transfer of scTCR gp100/Calpha transduced T cells conferred superior delay in tumor growth among primary and long-term secondary tumor challenges. We conclude that the novel scTCR constitutes a reliable means to immunotherapeutically target hematologic malignancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MHCII molecules expose a weave of antigens, which send survival or activation signals to T lymphocytes. The ongoing process of peptide binding to the MHC class II groove implicates three accessory molecules: the invariant chain, DM and DO. The invariant chain folds and directs the MHCII molecules to the endosomal pathway. Then, DM exchanges the CLIP peptide, which is a remnant of the degraded invariant chain, for peptides of better affinity. Expressed in highly specialized antigen presenting cells, DO competes with MHCII molecules for DM binding and favors the presentation of receptor-internalized antigens. Altogether, these molecules exhibit potential immunomodulatory properties that can be exploited to increase the potency of peptide vaccines. DO requires DM for maturation and to exit the ER. Interestingly, it is possible to monitor this interaction through a conformation change on DOβ that is recognized by the Mags.DO5 monoclonal antibody. Using Mags.DO5, we showed that DM stabilizes the interactions between the DO α1 and β1 chains and that DM influences DO folding in the ER. Thus, the Mags.DO5+ conformation correlates with DO egress from the ER. To further evaluate this conformation change, directed evolution was applied to DO. Of the 41 unique mutants obtained, 25% were localized at the DM-DO binding interface and 12% are at the solvent-exposed β1 domain, which is thought to be the Mags.DO5 epitope. In addition, I used the library to test the ability of HLA-DO to inhibit HLA-DM and sorted for the amount of CLIP. Interestingly, most of the mutants showed a decrease inhibitory effect, supporting the notion that the intrinsic instability of DO is a required for its function. Finally, these results support the model in which DO competes against classical MHCII molecules by sequestering DM chaperone’s function. MHCII molecules are also characterized by their ability to present superantigens, a group of bacterial or viral toxins that coerces MHCII-TCR binding in a less promiscuous fashion than what is observed in a canonical setting. While the mechanism of how bacterial superantigens form trimeric complexes with TCR and MHCII is well understood, the mouse mammary tumor virus superantigens (vSAG) are poorly defined. In the absence of a crystal structure, I chose a functional approach to examine the relation between vSAG, MHCII and TCR with the goal of uncovering the overall trimolecular architecture. I showed that TCR concomitantly binds both the MHCII α chain and the vSAG and that TCR-MHCII docking is almost canonical when coerced by vSAGs. Because many peptides may be tolerated in the MHCII groove, the pressure exerted by vSAG seems to tweak conventional TCR-MHCII interactions. Furthermore, my results demonstrate that vSAG binding to MHCII molecules is conformation-dependent and abrogated by the CLIP amino-terminal residues extending outside the peptide-binding groove. In addition, they also suggest that vSAGs cross-link adjacent MHCIIs and activate T cells via a TGXY motif.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vampire bats are notorious for being the sole mammals that strictly feed on fresh blood for their survival. While their saliva has been historically associated with anticoagulants, only one antihemostatic (plasminogen activator) has been molecularly and functionally characterized. Here, RNAs from both principal and accessory submaxillary (submandibular) salivary glands of Desmodus rotundus were extracted, and ~. 200. million reads were sequenced by Illumina. The principal gland was enriched with plasminogen activators with fibrinolytic properties, members of lipocalin and secretoglobin families, which bind prohemostatic prostaglandins, and endonucleases, which cleave neutrophil-derived procoagulant NETs. Anticoagulant (tissue factor pathway inhibitor, TFPI), vasodilators (PACAP and C-natriuretic peptide), and metalloproteases (ADAMTS-1) were also abundantly expressed. Members of the TSG-6 (anti-inflammatory), antigen 5/CRISP, and CCL28-like (antimicrobial) protein families were also sequenced. Apyrases (which remove platelet agonist ADP), phosphatases (which degrade procoagulant polyphosphates), and sphingomyelinase were found at lower transcriptional levels. Accessory glands were enriched with antimicrobials (lysozyme, defensin, lactotransferrin) and protease inhibitors (TIL-domain, cystatin, Kazal). Mucins, heme-oxygenase, and IgG chains were present in both glands. Proteome analysis by nano LC-MS/MS confirmed that several transcripts are expressed in the glands. The database presented herein is accessible online at http://exon.niaid.nih.gov/transcriptome/D_rotundus/Supplemental-web.xlsx. These results reveal that bat saliva emerges as a novel source of modulators of vascular biology. Biological significance: Vampire bat saliva emerges as a novel source of antihemostatics which modulate several aspects of vascular biology. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of the neuromuscular junction (NMJ) depends upon a nerve-derived protein, agrin, acting by means of a muscle-specific receptor tyrosine kinase, MuSK, as well as a required accessory receptor protein known as MASC. We report that MuSK does not merely play a structural role by demonstrating that MuSK kinase activity is required for inducing acetylcholine receptor (AChR) clustering. We also show that MuSK is necessary, and that MuSK kinase domain activation is sufficient, to mediate a key early event in NMJ formation—phosphorylation of the AChR. However, MuSK kinase domain activation and the resulting AChR phosphorylation are not sufficient for AChR clustering; thus we show that the MuSK ectodomain is also required. These results indicate that AChR phosphorylation is not the sole trigger of the clustering process. Moreover, our results suggest that, unlike the ectodomain of all other receptor tyrosine kinases, the MuSK ectodomain plays a required role in addition to simply mediating ligand binding and receptor dimerization, perhaps by helping to recruit NMJ components to a MuSK-based scaffold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proinflammatory cytokine interleukin 1 (IL-1) activates the transcription of many genes encoding acute phase and proinflammatory proteins, a function mediated primarily by the transcription factor NF-κB. An early IL-1 signaling event is the recruitment of the Ser/Thr kinase IRAK to the type I IL-1 receptor (IL-1RI). Here we describe the function of a previously identified IL-1 receptor subunit designated IL-1 receptor accessory protein (IL-1RAcP). IL-1 treatment of cells induces the formation of a complex containing both IL-1RI and IL-1RAcP. IRAK is recruited to this complex through its association with IL-1RAcP. Overexpression of an IL-1RAcP mutant lacking its intracellular domain, the IRAK-binding domain, prevented the recruitment of IRAK to the receptor complex and blocked IL-1-induced NF-κB activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At head of title: U.S. Dept. of Commerce. Jesse H. Jones, Secretary. Bureau of the Census. J.C. Capt, Director ..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photographic frontispiece and photographic plates facing p. 28, 54, 66, 98 and 134.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subtitle varies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The colored plates are accompanied by leaves with explanatory letterpress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No. 3 in a box of catalogs of microscopes, optical instruments, etc., 8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report is signed on behalf of the committee by F. G. Hopkins, chairman, and by Harriette Chick, secretary.