1000 resultados para 74-527_Site


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Accumulation rates for the five sites drilled during Leg 74 of the Glomar Challenger are presented on a common timescale based on calibration of datum levels to paleomagnetic records in Leg 74 sediments for the Paleogene, and a new compilation by Berggren et al. (1985), for the Neogene, and using the seafloor-spreading magnetic anomaly timescale of Kent (1985). We present data on accumulation of total sediment, of foraminifers, of the noncarbonate portion, and of fish teeth that give a history of productivity, winnowing, carbonate dissolution, and nonbiogenic input to what was then a part of the South Atlantic at about 30 deg S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interstitial water studies from sites drilled during a transect of the Walvis Ridge indicate that concentration increases in calcium and decreases in magnesium toward and into the basement. These trends can be understood principally in terms of reactions taking place in Layer 2 of the oceanic crust. At Site 525, however, some removal of magnesium occurs within the sediment column. Concentration maxima of dissolved strontium clearly indicate that carbonate recrystallization occurs throughout the carbonate sediments, and studies of the Sr/Ca ratio in carbonates indicate that in chalks and limestones recrystallization is essentially complete. Predictions of dissolved strontium maxima generally fail; this can be understood as removal of strontium in basal sediments and/or basalts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shallow- to deep-water environments are represented by the sediments and rocks recovered from the Walvis Ridge- Angola Basin transect. These calcareous oozes, chalks, limestones, and volcaniclastic sedimentary rocks are used to define and correlate four lithostratigraphic units. The sediments were deposited in cycles which represent recurring tectonic or Oceanographic events and may be related to climatic fluctuations and orbital perturbations. Turbidites are the most common and easily identified sedimentary cycle. They are Late Cretaceous to Paleocene in age and are repeated in intervals ranging from thousands to tens of thousands of years. They are also found interbedded between basalt layers. Turbidites are easily distinguished from the other cycles present by their sedimentary structures, mineral composition, alteration products, and physical properties (GRAPE) data. Large-scale turbidites, debris, or slump breccias are found at or just above the Cretaceous/Tertiary boundary and indicate an event of considerable energy possibly related to intense tectonic activity. Diagenetic cycles, interpreted as small-scale dissolution cycles or sequences produced by biogenic activity, occur in early Paleocene chalks. The recurrence intervals average -20,000 y. but have a wide range of values. Variations in CaCO3 content, color, gradational boundaries, and trace fossil content characterize these sediments. These cycles reflect bottom-water conditions. Ooze-chalk cycles occur in upper Oligocene to upper Paleocene sediments and represent conditions that once existed at the sediment/water interface where they obtained their diagenetic potential. These oscillations are repeated over tens of thousands of years and may have no modern analogs. Color variations in sediments at the Cretaceous/Tertiary boundary indicate local fluctuations in oxygen content within the sediments or the water column. This situation lasted for several hundred thousand years and is not repeated elsewhere in the sequence. Large dissolution cycles are recorded in the sediments at Site 527 that are of middle Miocene and early Oligocene to middle Eocene age. During this time the seafloor at this site appears to have been located at or subsided to a depth occupied by a fluctuating CCD and lysocline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution, fish tooth Nd isotopic records for eight Deep Sea Drilling Project and Ocean Drilling Program sites were used to reconstruct the nature of late Paleocene-early Eocene deep-water circulation. The goal of this reconstruction was to test the hypothesis that a change in thermohaline circulation patterns caused the abrupt 4-5°C warming of deep and bottom waters at the Paleocene/Eocene boundary - the Paleocene-Eocene thermal maximum (PETM) event. The combined set of records indicates a deep-water mass common to the North and South Atlantic, Southern and Indian oceans characterized by mean epsilon-Nd values of ~-8.7, and different water masses found in the central Pacific Ocean (epsilon-Nd ~-4.3) and Caribbean Sea (epsilon-Nd ~1.2). The geographic pattern of Nd isotopic values before and during the PETM suggests a Southern Ocean deep-water formation site for deep and bottom waters in the Atlantic and Indian ocean basins. The Nd data do not contain evidence for a change in the composition of deep waters prior to the onset of the PETM. This finding is consistent with the pattern of warming established by recently published stable isotope records, suggesting that deep- and bottom-water warming during the PETM was gradual and the consequence of surface-water warming in regions of downwelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined differences in response latencies obtained during a validated video-based hazard perception driving test between three healthy, community-dwelling groups: 22 mid-aged (35-55 years), 34 young-old (65-74 years), and 23 old-old (75-84 years) current drivers, matched for gender, education level, and vocabulary. We found no significant difference in performance between mid-aged and young-old groups, but the old-old group was significantly slower than the other two groups. The differences between the old-old group and the other groups combined were independently mediated by useful field of view (UFOV), contrast sensitivity, and simple reaction time measures. Given that hazard perception latency has been linked with increased crash risk, these results are consistent with the idea that increased crash risk in older adults could be a function of poorer hazard perception, though this decline does not appear to manifest until age 75+ in healthy drivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of chemical mutation featuring the selective conversion of asparagine or glutamine to aspartic or glutamic acid, respectively, on the kinetics of refolding of reduced RNase has been studied. The monodeamidated derivatives of RNase A, viz. RNase Aa1a, Aa1b, and Aa1c having their deamidations in the region 67-74, were found to regain nearly their original enzymatic activity. However, a marked difference in the kinetics of refolding is seen, the order of regain of enzymic activity being RNase A greater than Aa1c congruent to Aa1a greater than Aa1b. The similarities in the distinct elution positions on Amberlite XE-64, gel electrophoretic mobilities, and u.v. spectra of reoxidized and native derivatives indicated that the native structures are formed. The slower rate of reappearance of enzymic activity in the case of the monodeamidated derivatives appears to result from altered interactions in the early stages of refolding. The roles of some amino acid residues of the 67-74 region in the pathway of refolding of RNase A are discussed.