Neodymium isotope record of late Paleocene to eraly Eocene fish teeth


Autoria(s): Thomas, Deborah J; Bralower, Timothy J; Jones, Charles E
Cobertura

MEDIAN LATITUDE: 5.643371 * MEDIAN LONGITUDE: -29.025100 * SOUTH-BOUND LATITUDE: -65.161000 * WEST-BOUND LONGITUDE: -179.555000 * NORTH-BOUND LATITUDE: 49.088100 * EAST-BOUND LONGITUDE: 93.896200 * DATE/TIME START: 1972-02-04T00:00:00 * DATE/TIME END: 1997-01-21T19:15:00

Data(s)

02/12/2003

Resumo

High-resolution, fish tooth Nd isotopic records for eight Deep Sea Drilling Project and Ocean Drilling Program sites were used to reconstruct the nature of late Paleocene-early Eocene deep-water circulation. The goal of this reconstruction was to test the hypothesis that a change in thermohaline circulation patterns caused the abrupt 4-5°C warming of deep and bottom waters at the Paleocene/Eocene boundary - the Paleocene-Eocene thermal maximum (PETM) event. The combined set of records indicates a deep-water mass common to the North and South Atlantic, Southern and Indian oceans characterized by mean epsilon-Nd values of ~-8.7, and different water masses found in the central Pacific Ocean (epsilon-Nd ~-4.3) and Caribbean Sea (epsilon-Nd ~1.2). The geographic pattern of Nd isotopic values before and during the PETM suggests a Southern Ocean deep-water formation site for deep and bottom waters in the Atlantic and Indian ocean basins. The Nd data do not contain evidence for a change in the composition of deep waters prior to the onset of the PETM. This finding is consistent with the pattern of warming established by recently published stable isotope records, suggesting that deep- and bottom-water warming during the PETM was gradual and the consequence of surface-water warming in regions of downwelling.

Formato

application/zip, 15 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.708251

doi:10.1594/PANGAEA.708251

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Thomas, Deborah J; Bralower, Timothy J; Jones, Charles E (2003): Neodymium isotopic reconstruction of late Paleocene-early Eocene thermohaline circulation. Earth and Planetary Science Letters, 209(3-4), 309-322, doi:10.1016/S0012-821X(03)00096-7

Palavras-Chave #%SE; 113-690; 113-690B; 143-865; 143-865C; 143Nd/144Nd; 143Nd/144Nd e; 147Sm/144Nd; 165-1001; 165-1001A; 171-1051A; 22-213; 22-213_Site; 48-401; 48-401_Site; 74-527; 74-527_Site; 80-549; 80-549_Site; Age; AGE; Age model; Age model, Berggren et al (1995) BKSA95; Ageprof dat des; Ageprofile Datum Description; Blake Nose, North Atlantic Ocean; Caribbean Sea; Comment; COMPCORE; Composite Core; Deep Sea Drilling Project; Depth; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; e-Nd(0); e-Nd(T); e-Nd std dev; epsilon-Neodymium, standard deviation; epsilon-Neodymium (0); epsilon-Neodymium (T); Glomar Challenger; HO = highest occurrence, CIE = carbon isotope excursion; Indian Ocean//BASIN; Joides Resolution; Label; Leg113; Leg143; Leg165; Leg171B; Leg22; Leg48; Leg74; Leg80; LO = lowest occurrence, CIE = carbon isotope excursion; LO = lowest occurrence, HO = highest occurrence, CIE = carbon isotope excursion; Mass spectrometer Micromass Sector 54; Nd; Neodymium; Neodymium 143/Neodymium 144; Neodymium 143/Neodymium 144, error; North Atlantic/SPUR; North Atlantic/TERRACE; North Pacific Ocean; Ocean Drilling Program; ODP; ODP sample designation; Samarium 147/Neodymium 144 ratio; Sample code/label; South Atlantic; South Atlantic Ocean
Tipo

Dataset