996 resultados para 6-membered Heterocycles
Resumo:
Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.
Resumo:
Flash vacuum thermolysis of a large variety of heterocyclic compounds is a useful means of production of ketenes, ketenimines, thioketenes, allenes, iminopropadienones, bis(imino)propadienes, iminopropadienethiones, carbodiimides, isothiocyanates, acetylenes, fulminic acid, nitrile imines and nitrile ylides, nitriles, cyanamides, cyanates, and other compounds, often in preparatively useful yields.
Resumo:
Synthetic chemists constantly strive to develop new methodologies to access complex molecules more sustainably. The recently developed photocatalytic approach results in a valid and greener alternative to the classical synthetic methods. Here we present three protocols to furnish five-membered rings exploiting photoredox catalysis. We firstly obtained 4,5-dihydrofurans (4,5-DHFs) from readily available olefins and α-haloketones employing fac-Ir(ppy)3 as a photocatalyst under blue-light irradiation (Figure 1, top). This transformation resulted very broad in scope, thanks to its mild conditions and the avoidance of stoichiometric amounts of oxidants or reductants. Moreover, similar conditions could lead to β,γ-unsaturated ketones, or highly substituted tetrahydrofurans (THFs) by carefully differentiating the substitution pattern on the starting materials and properly adjusting the reaction parameters. We then turned our attention to the reactivity of allenamides employing analogous photocatalytic conditions to access 2-aminofurans (Figure 1, bottom). α-Haloketones again provided the radical generated by fac-Ir(ppy)3 under visible-light irradiation, which added to the π-system and furnished the cyclic molecule. The addition of a second molecule of the α-haloketone moiety led to the formation of the final highly functionalized furan, which might be further elaborated to afford more complex products. The two works were both supplied with mechanistic investigations supported by experimental and computational methods. As our last project, we developed a methodology to achieve cypentanonyl-fused N-methylpyrrolidines (Figure 2), exploiting N,N-dimethylamines and carboxylic acids as radical sources. In two separated photocatalytic steps, both functionalities are manipulated through the photoredox catalysis by 4CzIPN to add to an α,β-enone system, furnishing the bicyclic product.
Resumo:
X-Ray crystal structures, C-13 NMR spectra and theoretical calculations (B3LYP/6-31G*) are reported for the mesoionic (zwitterionic) pyridopyrimidinylium- and pyridooxazinyliumolates 2a, 3a and 5a,b as well as the enol ether 11b and the enamine 11c. The 1-NH compounds like 1a, 2a and 3a exist in the mesoionic form in the crystal and in solution, but the OH tautomers such as 1b and 2b dominate in the gas phase as revealed by the Ar matrix IR spectra in conjunction with DFT calculations. All data indicate that the mesoionic compounds can be regarded as intramolecular pyridine-ketene zwitterions (cf. 16 --> 17) with a high degree of positive charge on the pyridinium nitrogen, a long pyridinium N-CO bond (ca. 1.44-1.49 Angstrom), and normal C=O double bonds (ca. 1.22 Angstrom). All mesoionic compounds exhibit a pronounced tilting of the olate C=O groups (the C=O groups formally derived from a ketene) towards the pyridinium nitrogen, giving NCO angles of 110-118 degrees. Calculations reveal a hydrogen bond with 6-CH, analogous to what is found in ketene-pyridine zwitterions and the C3O2-pyridine complex. The 2-OH tautomers of type 1b, 2b, and 11 also show a high degree of zwitterionic character as indicated by the canonical structures 11 12.
Resumo:
Glutaraldehyde is one of the most widely used reagents in the design of biocatalysts. It is a powerful crosslinker, able to react with itself, with the advantages that this may bring forth. In this review, we intend to give a general vision of its potential and the precautions that must be taken when using this effective reagent. First, the chemistry of the glutaraldehyde/amino reaction will be commented upon. This reaction is still not fully clarified, but it seems to be based on the formation of 6-membered heterocycles formed by 5 C and one O. Then, we will discuss the production of intra- and inter-molecular enzyme crosslinks (increasing enzyme rigidity or preventing subunit dissociation in multimeric enzymes). Special emphasis will be placed on the preparation of cross-linked enzyme aggregates (CLEAs), mainly in enzymes that have low density of surface reactive groups and, therefore, may be problematic to obtain a final solid catalyst. Next, we will comment on the uses of glutaraldehyde in enzymes previously immobilized on supports. First, the treatment of enzymes immobilized on supports that cannot react with glutaraldehyde (only inter and intramolecular cross-linkings will be possible) to prevent enzyme leakage and obtain some enzyme stabilization via cross-linking. Second, the cross-linking of enzymes adsorbed on aminated supports, where together with other reactions enzyme/support crosslinking is also possible; the enzyme is incorporated into the support. Finally, we will present the use of aminated supports preactivated with glutaraldehyde. Optimal glutaraldehyde modifications will be discussed in each specific case (one or two glutaraldehyde molecules for amino group in the support and/or the protein). Using preactivated supports, the heterofunctional nature of the supports will be highlighted, with the drawbacks and advantages that the heterofunctionality may have. Particular attention will be paid to the control of the first event that causes the immobilization depending on the experimental conditions to alter the enzyme orientation regarding the support surface. Thus, glutaraldehyde, an apparently old fashioned reactive, remains the most widely used and with broadest application possibilities among the compounds used for the design of biocatalyst.
Resumo:
The crystal structure of raite was solved and refined from data collected at Beamline Insertion Device 13 at the European Synchrotron Radiation Facility, using a 3 × 3 × 65 μm single crystal. The refined lattice constants of the monoclinic unit cell are a = 15.1(1) Å; b = 17.6(1) Å; c = 5.290(4) Å; β = 100.5(2)°; space group C2/m. The structure, including all reflections, refined to a final R = 0.07. Raite occurs in hyperalkaline rocks from the Kola peninsula, Russia. The structure consists of alternating layers of a hexagonal chicken-wire pattern of 6-membered SiO4 rings. Tetrahedral apices of a chain of Si six-rings, parallel to the c-axis, alternate in pointing up and down. Two six-ring Si layers are connected by edge-sharing octahedral bands of Na+ and Mn3+ also parallel to c. The band consists of the alternation of finite Mn–Mn and Na–Mn–Na chains. As a consequence of the misfit between octahedral and tetrahedral elements, regions of the Si–O layers are arched and form one-dimensional channels bounded by 12 Si tetrahedra and 2 Na octahedra. The channels along the short c-axis in raite are filled by isolated Na(OH,H2O)6 octahedra. The distorted octahedrally coordinated Ti4+ also resides in the channel and provides the weak linkage of these isolated Na octahedra and the mixed octahedral tetrahedral framework. Raite is structurally related to intersilite, palygorskite, sepiolite, and amphibole.
Resumo:
This thesis outlines the design and application of new routes towards a range of novel bisindolylmaleimide and indolo[2,3-a]carbazole derivatives, and evaluation of their biological effects and their chemotherapeutic potential. A key part of this work focussed on utilising a hydroxymaleimide as a replacement for the prevalent lactam/maleimide functionality and forming a series of novel derivatives through substitution on the indole nitrogens. To achieve this, a robust synthetic strategy was developed which allowed access to key maleic anhydride intermediates using Perkin-type methodology. These hydroxymaleimides were further modified via a Lossen rearrangement to furnish a series of analogues containing a 6-membered F-ring. The theme of F-ring modulation was further expanded through the utilisation of a second route involving the design and synthesis of β-keto ester intermediates, which afforded novel derivatives containing pyrazolone and isocytosine headgroups, and various N-substituents. Work on a further route involving a dione intermediate resulted in the isolation of a bisindolyl derivative with a novel imidazole F-ring. Following the synthesis of 42 novel compounds, extensive screening was undertaken using the NCI-60 cell line screen, with twelve candidates progressing to evaluation via the five dose assay. This led to the identification of several lead compounds with high cytotoxicity and excellent selectivity profiles, which included derivatives with low nanomolar GI50 values against specific cancer cell lines, and also derivatives with selective cytotoxicity. Preliminary results from a kinase screen indicated noteworthy selectivity towards GSK3α/β and PIM1 kinases, with low micromolar IC50 values being observed for these enzymes.
Resumo:
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C6H4-NHN = C{C(= O)CH3}(2) bearing a substituent in the ortho-position [X = OH (H2L1) 1, AsO3H2 (H3L2) 2, Cl (HL3) 3, SO3H (H2L4) 4, COOCH3 (HL5) 5, COOH (H2L6) 6, NO2 (HL7) 7 or H (HL8) 8] lead to a variety of complexes including the monomeric [CuL4(H2O)(2)]center dot H2O 10, [CuL4(H2O)(2)] 11 and [Cu(HL4)(2)(H2O)(4)] 12, the dimeric [Cu-2(H2O)(2)(mu-HL2)(2)] 9 and the polymeric [Cu(mu-L-6)](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H2O)(4){NCNC(NH2)(2)}(2)](HL4)(2)center dot 6H(2)O 14 and the heteroligand polymer [Cu(mu-L-4)(im)](n) 15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, H-1 and C-13 NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L-8)(H2O)]center dot H2O, [Cu(L-1)(H2O)(2)]center dot H2O and [Cu(L-4)(H2O)(2)]center dot H2O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H2O2) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H2O (total yields of ca. 20% with TONs up to 566), under mild conditions.
Resumo:
An unprecedented NH2-directed Pd(II)-catalytic carbonylation of quaternary aromatic α -amino esters to yield 6-membered 10 benzolactams has been developed. The reaction shows a strong bias to 6-membered lactams over 5-membered ones. The steric hindrance around the amino group seems to be pivotal for the success of the process.
Resumo:
The aromatic six-membered heterocycles having three nitrogen atoms are denominated triazines. Among these heterocycles, isocyanuric chloride and cyanuric chloride are inexpensive and readily available 1,3,5-triazine derivatives, which have been attracting significant attention of organic chemists due to their different kinds of applications, which vary from pharmaceuticals to explosives. This short overview explores their uses in synthetic methods, as chlorinating and oxidating agents and some procedures for their preparation.
Resumo:
Condensation reactions of glycerol with aldehydes and ketones were performed under thermal heating and microwave irradiation regimes. Homogeneous and heterogeneous catalysts were tested in both conditions. A silica sulfated (SiO2-SO3H) heterogeneous catalyst demonstrated the best performance relative to a selectivity of >95% in favor of 5-membered ketals. For acetals, preference in favor of 5-membered or 6-membered functional groups depends on the nature of the catalyst. Homogenous catalysts favor the more stable 6-membered acetals, whereas heterogeneous catalysts favor the less stable 5-membered acetals. However, the isomer ratios in the acetalization reaction are too low, and hence the reaction cannot be used in a synthetic plan for functional materials. Ketalization processes mediated by SiO2-SO3H show a high selectivity in favor of a 5-membered ring (1,3-dioxolane). The scope of condensation was tested with different ketones. A mechanism for heterogeneous catalysis related to the selectivity in the cyclization process is presented herein. Solketal, a commercial product, was also obtained by a condensation reaction of glycerol and propanone, and showed a high selectivity in favor of 1,3-dioxolane. It was transformed to potential allylic and chiral intermediates. A mesogenic core was connected to the organic framework of glycerol to produce a monomer liquid crystal material with a stable smectic-C mesophase.
Resumo:
In the thesis entitled " Novel Strategies for Heterocyclic Constructions via 1 ,4-Dipolar Intermediates"Synthesis of a complex organic molecules essentially involves the formation of carbon-carbon and carbon-heteroatom bonds. Various synthetic methods are available for these processes involving ionic, pericyclic and radical reactions. Among the pericyclic reactions, dipolar cycloaddition reactions, introduced by Huisgen, have emerged as a very powerful tool for heterocyclic construction. Heterocyclic compounds remain an important class of organic molecules due to their natural abundance and remarkable biological activity, thus constituting an intergral part of pharmaceutical industry. In this respect, developing newer synthetic methodology for heterocyclic construction has been an area of immense interest. In recent years, 1,3-dipolar cycloaddition reactions proved to be efficient routes to a wide variety of five membered heterocycles, as attested by their application in the total synthesis of various complex organic molecules. However, the potential application of similar 1,4- dipolar cycloaddition reactions for the construction of six memebered heterocycles remained underexploited. In this context, a systematic investigation of the reactivity of 1,4-dipoles generated from nitrogen heterocycles (pyridine and its analogues) and dimethyl acetylenedicarboxy!ate (DMAD) towards various dipolarophiles has been carried out and the results are embodied.
Resumo:
The thesis entitled novel 1,3-dipolar cycloaddition reactions of acyclic carbonyl ylides and related chemistry embodies the results of the investigations carried out to explore the reactivity of acyclic carbonyl ylides,generated by the reaction of dicarbomethoxy carbine and aldehydes towards dipolarophiles such as activated styrenes,1,2-and 1,4-quinones. In conclusion ,we have explored the reactivity pattern of acyclic carbonyl ylides derived from dicarbomethoxycarbene and aldehyde towards activated styrenes with a view to develop a stereoselective synthesis of highly substituted tetrahydrofuran derivatives. It was also found that the ylide could be trapped by various 1,2-and 1,4-diones to form dioxolane derivatives. It is noteworthy that the cycloaddition is highly region- and stereoselective. With isatins the ylide preferentially adds to the more electrone deficient carbonyl group making it regiospecific. Hetrocyclic compounds are of pivotal importance in organic chemistry, and enormous efforts have been devoted to develop new methodologies for their synthesis. It is noteworthy in this context that, 1,3-dipolar cycloaddition reaction,otherwise called Huisgen reaction, constitutes one of the most efficient methods for the synthesis of five membered heterocycles. Among the various dipoles, carbonyl ylides have received substiancial attention in recent years largely due to their utility in the synthesis of a wide range of oxygen hetrocycles, which are often found as structural subunits of many bioactive natural products.
Resumo:
An algorithm is presented for the generation of molecular models of defective graphene fragments, containing a majority of 6-membered rings with a small number of 5- and 7-membered rings as defects. The structures are generated from an initial random array of points in 2D space, which are then subject to Delaunay triangulation. The dual of the triangulation forms a Voronoi tessellation of polygons with a range of ring sizes. An iterative cycle of refinement, involving deletion and addition of points followed by further triangulation, is performed until the user-defined criteria for the number of defects are met. The array of points and connectivities are then converted to a molecular structure and subject to geometry optimization using a standard molecular modeling package to generate final atomic coordinates. On the basis of molecular mechanics with minimization, this automated method can generate structures, which conform to user-supplied criteria and avoid the potential bias associated with the manual building of structures. One application of the algorithm is the generation of structures for the evaluation of the reactivity of different defect sites. Ab initio electronic structure calculations on a representative structure indicate preferential fluorination close to 5-ring defects.