942 resultados para 5-HT2A receptor
Resumo:
Neuronal dopamine and serotonin receptors are widely distributed in the central and the peripheral nervous systems at different levels. Dopaminergic and serotonergic systems have crucial role in aldehyde dehydrogenase regulation Stimulation of autonomic nervous system during ethanol treatment is suggested to be an important factor in regulating the ALDH function. The ALDH enzyme activity was increased in plasma, cerebral cortex, and liver but decreased in cerebellum. The ALDH enzyme affinity was decreased in plasma, brainstem and liver and increased in cerebral cortex and cerebellum. Dopamine and serotonin content decreased in liver and brain regions - cerebral cortex, corpus striatum of ethanol treated rats with an increased HVA/DA, 5-HIAA/5-HT tumover rate. Dopamine content decreased in brainstem with an increased HVA/DA turnover rate and serotonin content decreased with an increased 5-HIAA/5-HT turnover rate in the brainstem of ethanol treated rats compared to control. Serotonin content increased in hypothalamus with a decreased 5-HIAA/5—HT turnover rate where as dopamine content decreased in hypothalamus with an increased HVA/DA tumover rate of ethanol treated rats compared to control.alterations of DA D2 and 5-HTQA receptor function and gene expression in the cerebellum, hypothalamus, corpus striatum, cerebral cortex play an important role in the sympathetic regulation of ALDH enzyme in ethanol addiction. There is a serotonergic and dopaminergic functional regulation of ALDH activity in the brain regions and liver of ethanol treated rats. Gene expression studies of DA D2 and 5'HT2A studies confirm these observations. Perfusion studies using DA, 5-HT and glucose showed ALDH regulatory function. Brain activity measeurement using EEG showed a prominentfrontal brain wave difference. This will have immense clinical significance in the management of ethanol addiction.
Resumo:
We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.
Resumo:
Oleamide is an endogenous fatty acid primary amide that possesses sleep-inducing properties in animals and that has been shown to effect serotonergic receptor responses and block gap junction communication. Herein, the potentiation of the 5-HT1A receptor response is disclosed, and a study of the structural features of oleamide required for potentiation of the 5-HT2A and 5-HT1A response to serotonin (5-HT) is described. Of the naturally occurring fatty acids, the primary amide of oleic acid (oleamide) is the most effective at potentiating the 5-HT2A receptor response. The structural features required for activity were found to be highly selective. The presence, position, and stereochemistry of the Δ9-cis double bond is required, and even subtle structural variations reduce or eliminate activity. Secondary or tertiary amides may replace the primary amide but follow a well defined relationship requiring small amide substituents, suggesting that the carboxamide serves as a hydrogen bond acceptor but not donor. Alternative modifications at the carboxamide as well as modifications of the methyl terminus or the hydrocarbon region spanning the carboxamide and double bond typically eliminate activity. A less extensive study of the 5-HT1A potentiation revealed that it is more tolerant and accommodates a wider range of structural modifications. An interesting set of analogs was identified that inhibit rather than potentiate the 5-HT2A, but not the 5-HT1A, receptor response, further suggesting that such analogs may permit the selective modulation of serotonin receptor subtypes and even have opposing effects on the different subtypes.
Resumo:
In the present study we compared the affinity of various drugs for the high affinity "agonist-preferring" binding site of human recombinant 5-HT2A, 5-HT2B and 5-HT2C receptors stably expressed in monoclonal mammalian cell lines. To ensure that the "agonist-preferring" conformation of the receptor was preferentially labelled in competition binding experiments, saturation analysis was conducted using antagonist and agonist radiolabels at each receptor. Antagonist radiolabels ([H-3]-ketanserin for 5-HT2A receptor and [H-3]-mesulergine for 5-HT2B and 5-HT2C receptor) bound to a larger population of receptors in each preparation than the corresponding agonist radiolabel ([I-125]-DOI for 5-HT2A receptor binding and [H-3]-5-HT for 5-HT2B and 5-HT2C receptor binding). Competition experiments were subsequently conducted against appropriate concentrations of the agonist radiolabels bound to the "agonist-preferring" subset of receptors in each preparation. These studies confirmed that there are a number of highly selective antagonists available to investigate 5-HT2 receptor subtype function (for example, MDL 100907, RS-127445 and RS-102221 for 5-HT2A, 5-HT2B and 5-HT2C receptors respectively). There remains, however, a lack of highly selective agonists. (-)DOI is potent and moderately selective for 5-HT2A receptors, BW723C86 has poor selectivity for human 5-HT2B receptors, while Org 37684 and VER-3323 display some selectivity for the 5-HT2C receptor. We report for the first time in a single study, the selectivity of numerous serotonergic drugs for 5-HT2 receptors from the same species, in mammalian cell lines and using, exclusively, agonist radiolabels. The results indicate the importance of defining the selectivity of pharmacological tools, which may have been over-estimated in the past, and highlights the need to find more selective agonists to investigate 5-HT2 receptor pharmacology.
Resumo:
A serotonina tem sido relacionada aos comportamentos apetitivo, emocional, motor, cognitivo e autonômico. Os neurônios serotonérgicos estão localizados nos núcleos da rafe, projetam-se para todas as regiões do sistema nervoso central e atuam através de sete tipos de receptores diferentes (5-HT1-7). Os receptores do tipo 2 são categorizados em 3 sub-tipos (A, B e C). Os receptores 5-HT2A são receptores pós sinápticos que promovem a ativação da fosfolipase C, responsável pela hidrólise de fosfolipídios da membrana neuronal, dando origem aos segundos mensageiros diacilglicerol e trifosfato de inositol. O gene do receptor 5-HT2A apresenta alguns polimorfismos, entre os quais o T102C, onde na posição 102 pode estar ou uma timina (T) ou uma citosina (C). Este polimorfismo, apesar de não determinar uma alteração na seqüência de amionoácidos que compõem o receptor determina sua expressão em quantidade diferente. Nesta tese, o polimorfismo T102C do gene do receptor 5-HT2A foi empregado como uma ferramenta para o estudo da neuroquímica do tabagismo e do comportamento alimentar. No estudo acerca do tabagismo, um grupo de 625 sujeitos foi genotipado e classificado de acordo com seu comportamento em relação ao fumo (fumantes atuais, exfumantes ou não fumantes). Foram encontradas diferenças na distribuição dos genótipos quando fumantes atuais foram comparados com ex-fumantes e não fumantes, sugerindo que o polimorfismo T102C está associado com a manutenção, e não o início, do hábito de fumar. O genótipo CC era mais freqüente nos fumantes atuais do que nos ex-fumantes e não fumantes. No estudo sobre o comportamento alimentar, um grupo de 240 sujeitos idosos foi genotipado e sua dieta espontânea foi avaliada tanto quanto ao conteúdo de macro quanto de micro-nutrientes. Foram encontradas diferenças na dieta relacionadas ao polimorfismo T102C. Os indivíduos TT comem uma maior quantidade e proporção de proteínas, apesar de não alterar a quantidade de calorias ingeridas. Eles ingerem mais carne vermelha todos os aminoácidos essenciais. Concluindo, através de um instrumento da genética molecular que identifica sujeitos com suscetibilidade para terem uma menor ou maior quantidade de receptores 5-HT2A, para o qual não há agonistas específicos, é possível sugerir o provável envolvimento deste receptor tanto nos mecanismos de manutenção da adição ao tabaco quanto nos de preferência alimentar.
Resumo:
This study was aimed at testing the hypothesis that serotoninergic receptors in the locus coeruleus (LC) play a role in bacterial lipopolysaccharide-induced fever. To this end, 5-HT1A (WAY-100635; 3 mu g/100 nL) and 5-HT2A (ketanserin; 2 mu g/100 nL) antagonists were microinjected into the LC and body temperature was monitored by biotelemetry. Intra-LC microinjections of ketanserin or WAY-100635 caused no change in body temperature of euthermic animals. 5-HT2A antagonism abolished the first phase of the lipopolysaccharide-induced fever. Taken together, these results indicate that serotonin acting on 5-HT2A receptors in the LC mediates the first phase of the febrile response, whereas 5-HT1A receptors are not involved in the lipopolysaccharide-induced fever.
Resumo:
It is widely acknowledged that the indoleamine neurotransmitter serotonin (5-HT) plays a dual role in the regulation of anxiety, a role that in part depends upon neuroanatomical locus of action. Thus, whereas stimulation of 5-HT1A or 5-HT2 receptors in the limbic forebrain (amygdala, hippocampus) enhances anxiety-like responding in rodents, activation of corresponding receptor populations in the midbrain periaqueductal grey (PAG) more often than not reduce anxiety-like behaviour. The present study specifically concerns the anxiety-modulating influence of 5-HT2 receptors within the mouse PAG. Experiment 1 assessed the effects of intra-PAG infusions of the 5-HT2B/2C receptor agonist mCPP (0, 0.03, 0.1 or 0.3 nmol/0.1 mu l) on the behaviour of mice exposed to the elevated plus-maze. As mCPP acts preferentially at 5-HT2B and 5-HT2C receptors, Experiment 2 investigated its effects in animals pretreated with ketanserin, a preferential 5-HT2A/2C receptor antagonist. In both cases, test sessions were videotaped and subsequently, scored for anxiety-like behaviour (e.g., percentage of open arm entries and percentage of open arm time) as well as general locomotor activity (closed arm entries). The results of Experiment I showed that mCPP microinfusions (0.03 and 0.1 nmol) into the PAG of mice decreased behavioural indices of anxiety without significantly altering general activity measures. In Experiment 2, the anxiolytic-like profile of intra-PAG mCPP (0.03 nmol) was substantially attenuated by intra-PAG pretreatment with an intrinsically inactive dose of the preferential 5-HT2A/2C receptor antagonist, ketanserin (10 nmol/0.1 mu l). Together, these data suggest that 5HT(2C) receptor populations within the midbrain PAG play an inhibitory role in plus-maze anxiety in mice. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Für diese Arbeit wurden sechs neue Benzodiazepinderivate, TC07, TC08, TC09, TC10, TC11 und TC12, hergestellt. Diese wurden mittels Radioligandenbindungsassay sowohl auf ihre Bindungseigenschaften für Membranen des Cerebellum, des Hippo-campus und des Cortex der Ratte hin untersucht, als auch für Membranen von HEK293 Zellen, die transient rekombinante GABAA Rezeptoren exprimierten. Zusätz-lich wurden kompetitive in situ Rezeptorautoradiographien an Rattenhirnschnitten mit den Liganden [3H]Ro15-4513 und [3H]R015-1788 durchgeführt. Zusammen ergaben sich aus diesen Experimenten deutliche Hinweise auf eine Selektivität der Verbindun-gen TC07, TC11 und TC12 für a5-Untereinheiten enthaltende GABAA Rezeptoren mit a5-Affinitäten im niedrigen nanomolaren Bereich. In vivo Bindungsexperimente in Ratten, mit [3H]Ro15-1788 als Tracer und TC07 als Kompetitor, ergaben, dass TC07 mehr [3H]Ro15-1788 im Vorderhirn als im Cerebellum verdrängt. Bezog man die regionale Verteilung der a5-Untereinheit des GABAA Rezep-tors im Rattenhirn mit ein – sehr wenige a5-Untereinheiten im Cerebellum, etwa 20 % der GABAA Rezeptor-Untereinheiten im Hippocampus – untermauerten diese Ergeb-nisse die Vermutung, TC07 könne a5-selektiv sein. Diese Daten bestätigten darü-berhinaus, dass TC07 die Blut-Hirn-Schranke passieren kann. Für elektrophysiologische Messungen mit TC07 und TC12 wurden die oben erwähnten transient transfizierten HEK293 Zellen verwendet, welche die GABAA Rezeptor Unte-reinheitenkombination a5b3g2 exprimierten. Das Dosis-Antwort Verhalten ergab keinen signifikanten Effekt für TC12. Die Daten von TC07 dagegen lassen auf einen schwach negativ modulatorischen Effekt schließen, was, zumindest theoretisch, die Möglichkeit eröffnet, TC07 auch als sogenannten cognitive enhancer einzusetzen. Der errechnete Ki-Wert lag in derselben Größenordnung wie der Ki-Wert, der anhand der Bindungsas-saydaten errechnet wurde. Insgesamt rechtfertigen die bisherigen Ergebnisse die radiochemische Markierung mit 18F von drei der sechs getesteten Verbindungen in der Reihenfolge TC07, TC12 und TC11. Des Weiteren wurde [18F]MHMZ, ein potentiell 5-HT2A selektiver Ligand und PET-Tracer einschließlich Vorläufer und Referenzverbindungen, mit hohen Ausbeuten syn-thetisiert (Herth, Debus et al. 2008). Autoradiographieexperimente mit Rattenhirn-schnitten zeigten hervorragende in situ Bindungseigenschaften der neuen Verbindung. Die Daten wiesen eine hohe Selektivität für 5-HT2A Rezeptoren in Verbindung mit einer niedrigen unspezifischen Bindung auf. [18F]MHMZ erfährt in vivo eine schnelle Metabo-lisierung, wobei ein polarer aktiver Metabolit entsteht, welcher vermutlich nicht die Blut-Hirn-Schranke passieren kann. Transversale, sagittale und coronale Kleintier-PET-Bilder des Rattenhirns zeigten eine hohe Anreicherung im frontalen Cortex und im Striatum, während im Cerebellum so gut wie keine Anreicherung festzustellen war. Diese Verteilung deckt sich mit der bekann-ten Verteilung der 5-HT2A Rezeptoren. Die in vivo Anreicherung scheint sich ebenfalls gut mit der Verteilung der in den Autoradiographieexperimenten gemessenen Bindung zu decken. Nach Berechnungen mit dem 4-Parameter Referenzgewebe Modell beträgt das Bindungspotential (BP) für den frontalen Cortex 1,45. Das Cortex zu Cerebellum Verhältnis wurde auf 2,7 nach 30 Minuten Messzeit bestimmt, was bemerkenswert nah an den von Lundkvist et al. für [11C]MDL 100907 publizierten Daten liegt. Abgesehen von der etwas niedrigeren Affinität waren die gemessenen in vitro, in situ und in vivo Daten denen von [3H]MDL 100907 und [11C]MDL 100907 sehr ähnlich, so dass wir ein [18F]Analogon in der Hand haben, das die bessere Selektivität von MDL 100907 verglichen mit Altanserin mit der längeren Halbwertszeit und den besse-ren Eigenschaften für die klinische Routine von 18F verglichen mit 11C verbindet. Die Ergebnisse von [18F]MHMZ rechtfertigenden weitere Experimente, um diesen Liganden für die klinische Routine am Menschen nutzbar zu machen.
Resumo:
OBJECTIVE: To investigate the distribution of mRNA coding for 7 subtypes of 5-hydroxytryptamine receptors (5-HTRs) in the intestines of healthy dairy cows and dairy cows with cecal dilatation-dislocation (CDD). SAMPLE POPULATION: Full-thickness intestinal wall biopsy specimens were obtained from the ileum, cecum, proximal loop of the ascending colon, and external loop of the spiral colon (ELSC) of 15 cows with CDD (group 1) and 15 healthy dairy cows allocated to 2 control groups (specimens collected during routine laparotomy [group 2] or after cows were slaughtered [group 3]). PROCEDURE: Amounts of mRNA coding for 7 subtypes of 5-HTRs (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT4) were measured by quantitative real-time reverse transcriptase-PCR assay. Results were expressed as the percentage of mRNA expression of a housekeeping gene. RESULTS: Expression of mRNA coding for 5-HTR1B, 5-HTR2B, and 5-HTR4 was significantly lower in cows with CDD than in healthy cows. For 5-HTR2B and 5-HTR4, significant differences between cows with CDD and control cows were most pronounced for the ELSC. Expression of mRNA for 5-HTR1D, 5-HTR1F, and 5-HTR2A was extremely low in all groups, and mRNA for 5-HTR1A was not detected. CONCLUSIONS AND CLINICAL RELEVANCE: Relative concentrations of mRNA coding for 5-HTR1B, 5-HT2B, and 5-HTR4 were significantly lower in the intestines of cows with CDD than in the intestines of healthy dairy cows, especially for 5-HT2B and 5-HTR4 in the ELSC. This supports the hypothesis that serotonergic mechanisms, primarily in the spiral colon, are implicated in the pathogenesis of CDD.
Resumo:
Migraine is a common complex disorder, currently classified into two main subtypes, migraine with aura (MA) and migraine without aura (MO). The strong preponderance of females to males suggests an X-linked genetic component. Recent studies have identified an X chromosomal susceptibility region (Xq24-q28) in two typical migraine pedigrees. This region harbours a potential candidate gene for the disorder, the serotonin receptor 2C (5-HT2C) gene. This study involved a linkage and association approach to investigate two single nucleotide variants in the 5-HT2C gene. In addition, exonic coding regions of the 5-HT2C gene were also sequenced for mutations in X-linked migraine pedigrees. Results of this study did not detect any linkage or association, and no disease causing mutations were identified. Hence, results for this study do not support a significant role of the 5-HT 2C gene in migraine predisposition. © 2003 Wiley-Liss, Inc.
Resumo:
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family
Resumo:
The alpha v beta 3 and alpha v beta 5 integrins, transmembrane glycoprotein receptors, are over-expressed in numerous tumors and in endothelial cells that constitute tumor blood vessels. As this protein selectively binds to the Arg-Gly-Asp (RGD) sequence containing peptides, it is an attractive way to target tumors. Herein we have developed novel formulations for integrin mediated selective gene delivery. These formulations are composed of a novel palmitoylated tetrameric RGD containing scaffold (named RAFT-RGD), cationic gemini cholesterol (GL5) and a natural helper lipid 1,2-dioleoyl-L-alpha-glycero-3-phosphatidylethanolamine (DOPE). We have optimized a co-liposomal formulation to introduce the multivalent RGD-containing macromolecule in GL5: DOPE (GL5D) mixture to produce GL5D-RGD. We have unambiguously shown the selectivity of these formulations towards cancer cells that over express alpha v beta 3 and alpha v beta 5 integrins. Two reporter plasmids, pEGFP-C3 and PGL-3, were employed for the transfection experiments and it was shown that GL5D-RGD Liposomes increased exclusively the transfection in alpha v beta 3 and alpha v beta 5 overexpressing HeLa cells.
Resumo:
A side-effect of treatment with antipsychotic drugs for schizophrenia is increased body fat, which leads to further morbidity and poor adherence to treatment. The 5-hydroxytryptamine 2C receptor (5-HT2C) has been associated with this effect; we aimed to establish whether a genetic polymorphism of the promoter region of this receptor affects weight gain after drug treatment in first-episode patients with schizophrenia. We noted significantly less weight gain in patients with the -759T variant allele (p=0.0003) than in those without this allele, who were more likely to have substantial (>7%) weight gain (p=0.002). We have identified a genetic factor that is associated with antipsychotic drug-induced weight gain.