982 resultados para 3D geological modelling
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which subsidence measurements collected along ground and building sections during tunnelling were available.Settlements measured under freefield conditions are firstly back interpreted using Gaussian empirical predictions. Then,the in situ measurements’ analysis is extended to include the evolving response of a 9 storey reinforced concrete building while being undercrossed by the metro line.In the finite element study,the soil mechanical behaviour is described using an advanced constitutive model. This latter,when combined with a proper simulation of the excavation process, proves to realistically reproduce the subsidence profiles under free field conditions and to capture the interaction phenomena occurring between the twin tunnels during the excavation. Furthermore, when the numerical model is extended to include the building, schematised in a detailed manner, the results are in good agreement with the monitoring data for different stages of the twin tunnelling. Thus, they indirectly confirm the satisfactory performance of the adopted numerical approach which also allows a direct evaluation of the structural response as an outcome of the analysis. Further analyses are also carried out modelling the building with different levels of detail. The results highlight that, in this case, the simplified approach based on the equivalent plate schematisation is inadequate to capture the real tunnelling induced displacement field. The overall behaviour of the system proves to be mainly influenced by the buried portion of the building which plays an essential role in the interaction mechanism, due to its high stiffness.
Resumo:
Numerical modelling was performed to study the dynamics of multilayer detachment folding and salt tectonics. In the case of multilayer detachment folding, analytically derived diagrams show several folding modes, half of which are applicable to crustal scale folding. 3D numerical simulations are in agreement with 2D predictions, yet fold interactions result in complex fold patterns. Pre-existing salt diapirs change folding patterns as they localize the initial deformation. If diapir spacing is much smaller than the dominant folding wavelength, diapirs appear in fold synclines or limbs.rnNumerical models of 3D down-building diapirism show that sedimentation rate controls whether diapirs will form and influences the overall patterns of diapirism. Numerical codes were used to retrodeform modelled salt diapirs. Reverse modelling can retrieve the initial geometries of a 2D Rayleigh-Taylor instability with non-linear rheologies. Although intermediate geometries of down-built diapirs are retrieved, forward and reverse modelling solutions deviate. rnFinally, the dynamics of fold-and-thrusts belts formed over a tilted viscous detachment is studied and it is demonstrated that mechanical stratigraphy has an impact on the deformation style, switching from thrust- to folding-dominated. The basal angle of the detachment controls the deformation sequence of the fold-and-thrust belt and results are consistent with critical wedge theory.rn
Resumo:
In the present work, a three-dimensional (3D) formulation based on the method of fundamental solutions (MFS) is applied to the study of acoustic horns. The implemented model follows and extends previous works that only considered two-dimensional and axisymmetric horn configurations. The more realistic case of 3D acoustic horns with symmetry regarding two orthogonal planes is addressed. The use of the domain decomposition technique with two interconnected sub-regions along a continuity boundary is proposed, allowing for the computation of the sound pressure generated by an acoustic horn installed on a rigid screen. In order to reduce the model discretization requirements for these cases, Green’s functions derived with the image source methodology are adopted, automatically accounting for the presence of symmetry conditions. A strategy for the calculation of an optimal position of the virtual sources used by the MFS to define the solution is also used, leading to improved reliability and flexibility of the proposed method. The responses obtained by the developed model are compared to reference solutions, computed by well-established models based on the boundary element method. Additionally, numerically calculated acoustic parameters, such as directivity and beamwidth, are compared with those evaluated experimentally.
Resumo:
Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. Methods A japonica type rice, 'Namaga', was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create '3D virtual rice' plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The '3D virtual rice' reproduces the structural development of isolated plants and provides a good estimation of the fillering process, and of the accumulation of leaves. Conclusions The results indicated that the '3D virtual rice' has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion.
Resumo:
The Camorim Oilfield, discovered in 1970 in the shallow water domain of the Sergipe Sub-basin, produces hydrocarbons from the Carmópolis Member of the Muribeca Formation, the main reservoir interval, interpreted as siliciclastics deposited in an alluvial-fluvial-deltaic context during a late rifting phase of Neoaptian age, in the Sergipe-Alagoas Basin. The structural setting of the field defines different production blocks, being associated to the evolution of the Atalaia High during the rift stage and subsequent reactivations, encompassing NE-SW trending major normal faults and NWEW trending secondary faults. The complexity of this field is related to the strong facies variation due to the interaction between continental and coastal depositional environments, coupled with strata juxtaposition along fault blocks. This study aims to geologically characterize its reservoirs, to provide new insights to well drilling locations in order to increase the recovery factor of the field. Facies analysis based on drill cores and geophysical logs and the 3D interpretation of a seismic volume, provide a high resolution stratigraphic analysis approach to be applied in this geodynamic transitional context between the rift and drift evolutionary stages of the basin. The objective was to define spatial and time relations between production zones and the preferential directions of fluid flow, using isochore maps that represent the external geometry of the deposits and facies distribution maps to characterize the internal heterogeneities of these intervals, identified in a 4th order stratigraphic zoning. This work methodology, integrated in a 3D geological modelling process, will help to optimize well drilling and hydrocarbons production. This methodology may be applied in other reservoirs in tectonic and depositional contexts similar to the one observed at Camorim, for example, the oil fields in the Aracaju High, Sergipe Sub-basin, which together represent the largest volume of oil in place in onshore Brazilian basins
Resumo:
Apresenta-se uma metodologia para caracterizar a transmissividade dos Granitos Hercínicos e Metasedimentos do Complexo Xisto-Grauváquico do maciço envolvente e subjacente à antiga área mineira de urânio da Quinta do Bispo. Inicia-se com a modelação das litologias e grau de alteração a que se segue a simulação condicional da densidade de fracturação. No final, a densidade de fracturação é convertida num modelo 3D de transmissividade por relação com os resultados dos ensaios de bombagem. The purpose of this work is to present a methodology for characterizing the transmissivity of the Hercynian granites and complex schist–greywacke metasediment rocks surrounding and underlying the old Quinta do Bispo uranium mining site. The methodology encompasses modelling of lithologies and weathering levels, followed by a conditional simulation of fracture density. Fracture density is then converted into a 3D model of transmissivity via a relationship with pumping tests.
Resumo:
Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc
Resumo:
Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.
Resumo:
Climate change has given an impetus to research and developed new technologies to reduce significantly carbon dioxide emissions in energy production in the developed countries. The major pollution source, fossil fuels, will be used as an energy source for many decades, which provides the demand for carbon capture and storage technologies. Over recent years many new technologies has been developed and one of the most promising is calcium-looping in post-combustion carbon capture process, which use carbonation-calcination cycle to capture carbon dioxide from the flue gas of a combustion process. First pilot plant for calcium-looping process has been built in Oviedo, Spain. In this study, a three-dimensional model has been created for the calciner, which is one of the two fluidized bed reactors needed for the process. The calciner is a regenerator where the captured carbon dioxide is removed from the calcium material and then collected after the reactor. Thesis concentrates in creating the calciner 3D-model frame with CFB3D-program and testing the model with two different example cases. Used input parameters and calciner geometry are Oviedo pilot plant design parameters. The calculation results give information about the process and show that pilot plant calciner should perform as planned. This Master’s Thesis is done in participation to EU FP7 project CaOling.
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc
Resumo:
*** Purpose – Computer tomography (CT) for 3D reconstruction entails a huge number of coplanar fan-beam projections for each of a large number of 2D slice images, and excessive radiation intensities and dosages. For some applications its rate of throughput is also inadequate. A technique for overcoming these limitations is outlined. *** Design methodology/approach – A novel method to reconstruct 3D surface models of objects is presented, using, typically, ten, 2D projective images. These images are generated by relative motion between this set of objects and a set of ten fanbeam X-ray sources and sensors, with their viewing axes suitably distributed in 2D angular space. *** Findings – The method entails a radiation dosage several orders of magnitude lower than CT, and requires far less computational power. Experimental results are given to illustrate the capability of the technique *** Practical implications – The substantially lower cost of the method and, more particularly, its dramatically lower irradiation make it relevant to many applications precluded by current techniques *** Originality/value – The method can be used in many applications such as aircraft hold-luggage screening, 3D industrial modelling and measurement, and it should also have important applications to medical diagnosis and surgery.
Resumo:
Joint interpretation of magnetotelluric and geomagnetic depth sounding data in the western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques. 3d-forward-modelling reveals on the one hand interrupted dipping crustal conductors with maximum conductance of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central western Alps. Graphite networks arising from Paleozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. In conclusion, electromagnetic results can be attributed to the geological, tectonic and palaeogeographical background. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its palaeographic belonging to the Iberian Peninsula.
Resumo:
We dedicate this paper to the memory of Prof. Andres Perez Estaún, who was a great and committed scientist, wonderful colleague and even better friend. The datasets in this work have been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme 15 for Recovery” and the Compostilla OXYCFB300 project. Dr. Juan Alcalde is currently funded by NERC grant NE/M007251/1. Simon Campbell and Samuel Cheyney are acknowledged for thoughtful comments on gravity inversion