906 resultados para 3D INVERSION
Resumo:
In three-dimensional (3D) coronary magnetic resonance angiography (MRA), the in-flow contrast between the coronary blood and the surrounding myocardium is attenuated as compared to thin-slab two-dimensional (2D) techniques. The application of a gadolinium (Gd)-based intravascular contrast agent may provide an additional source of signal and contrast by reducing T(1blood) and supporting the visualization of more distal or branching segments of the coronary arterial tree. In six healthy adults, the left coronary artery (LCA) system was imaged pre- and postcontrast with a 0.075-mmol/kg bodyweight dose of the intravascular contrast agent B-22956. For imaging, an optimized free-breathing, navigator-gated and -corrected 3D inversion recovery (IR) sequence was used. For comparison, state-of-the-art baseline 3D coronary MRA with T(2) preparation for non-exogenous contrast enhancement was acquired. The combination of IR 3D coronary MRA, sophisticated navigator technology, and B-22956 allowed for an extensive visualization of the LCA system. Postcontrast, a significant increase in both the signal-to-noise ratio (SNR; 46%, P < 0.05) and contrast-to-noise ratio (CNR; 160%, P < 0.01) was observed, while vessel sharpness of the left anterior descending (LAD) artery and the left coronary circumflex (LCX) were improved by 20% (P < 0.05) and 18% (P < 0.05), respectively.
Resumo:
A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (rho < 20 Omega m), water table depth, and groundwater flow direction. A conductive anomaly (rho < 20 Omega m) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/rho) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.
Resumo:
A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (rho < 20 Omega m), water table depth, and groundwater flow direction. A conductive anomaly (rho < 20 Omega m) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/rho) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Fluid that fills boreholes in crosswell electrical resistivity investigations provides the necessary electrical contact between the electrodes and the rock formation but it is also the source of image artifacts in standard inversions that do not account for the effects of the boreholes. The image distortions can be severe for large resistivity contrasts between the rock formation and borehole fluid and for large borehole diameters. We have carried out 3D finite-element modeling using an unstructured-grid approach to quantify the magnitude of borehole effects for different resistivity contrasts, borehole diameters, and electrode configurations. Relatively common resistivity contrasts of 100:1 and borehole diameters of 10 and 20 cm yielded, for a bipole length of 5 m, apparent resistivity underestimates of approximately 12% and 32% when using AB-MN configurations and apparent resistivity overestimates of approximately 24% and 95% when using AM-BN configurations. Effects are generally more severe at shorter bipole spacings. We report the results obtained by either including or ignoring the boreholes in inversions of 3D field data from a test site in Switzerland, where approximately 10,000 crosswell resistivity-tomography measurements were made across six acquisition planes among four boreholes. Inversions of raw data that ignored the boreholes filled with low-resistivity fluid paradoxically produced high-resistivity artifacts around the boreholes. Including correction factors based on the modeling results fora ID model with and without the boreholes did not markedly improve the images. The only satisfactory approach was to use a 3D inversion code that explicitly incorporated the boreholes in the actual inversion. This new approach yielded an electrical resistivity image that was devoid of artifacts around the boreholes and that correlated well with coincident crosswell radar images.
Resumo:
BACKGROUND: Takayasu arteritis (TA) is a rare form of chronic inflammatory granulomatous arteritis of the aorta and its major branches. Late gadolinium enhancement (LGE) with magnetic resonance imaging (MRI) has demonstrated its value for the detection of vessel wall alterations in TA. The aim of this study was to assess LGE of the coronary artery wall in patients with TA compared to patients with stable CAD. METHODS: We enrolled 9 patients (8 female, average age 46±13 years) with proven TA. In the CAD group 9 patients participated (8 male, average age 65±10 years). Studies were performed on a commercial 3T whole-body MR imaging system (Achieva; Philips, Best, The Netherlands) using a 3D inversion prepared navigator gated spoiled gradient-echo sequence, which was repeated 34-45 minutes after low-dose gadolinium administration. RESULTS: No coronary vessel wall enhancement was observed prior to contrast in either group. Post contrast, coronary LGE on IR scans was detected in 28 of 50 segments (56%) seen on T2-Prep scans in TA and in 25 of 57 segments (44%) in CAD patients. LGE quantitative assessment of coronary artery vessel wall CNR post contrast revealed no significant differences between the two groups (CNR in TA: 6.0±2.4 and 7.3±2.5 in CAD; p = 0.474). CONCLUSION: Our findings suggest that LGE of the coronary artery wall seems to be common in patients with TA and similarly pronounced as in CAD patients. The observed coronary LGE seems to be rather unspecific, and differentiation between coronary vessel wall fibrosis and inflammation still remains unclear.
Resumo:
We investigate the strong magnetic and gravity anomalies of the Goias Alkaline Province (GAP), a region of Late Cretaceous alkaline magmatism along the northern border of the Parana Basin, Brazil. The alkaline complexes (eight of which are present in outcrops, two others inferred from magnetic signals) are characterized by a series of small intrusions forming almost circular magnetic and gravimetric anomalies varying from -4000 to +6000 nT and from -10 to +40 mGal, respectively. We used the Aneuler method and Analytical Signal Amplitude to obtain depth and geometry for mapped sources from the magnetic anomaly data. These results were used as the reference models in the 3D gravity inversion. The 3D inversion results show that the alkaline intrusions have depths of 10-12 km. The intrusions in the northern GAP follow two alignments and have different sizes. In the anomaly magnetic map, dominant guidelines correlate strongly with the extensional regimes that correlate with the rise of alkaline magmatism. The emplacement of these intrusions marks mechanical discontinuities and zones of weakness in the upper crust. According to the 3D inversion results, those intrusions are located within the upper crust (from the surface to 18 km depth) and have spheres as the preferable geometry. Such spherical shapes are more consistent with magmatic chambers instead of plug intrusions. The Registro do Araguaia anomaly (similar to 15 by 25 km) has a particular magnetic signature that indicates that the top is deeper than 1500 m. North of this circular anomaly are lineaments with structural indices indicating contacts on their edges and dikes/sills in the interiors. Results of 3D inversion of magnetic and gravity data suggest that the Registro do Araguaia is the largest body in the area, reaching 18 km depth and indicating a circular layered structure. (C) 2011 Elsevier Ltd. All rights reserved.
3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition.
Resumo:
Current 2D black blood coronary vessel wall imaging suffers from a relatively limited coverage of the coronary artery tree. Hence, a 3D approach facilitating more extensive coverage would be desirable. The straightforward combination of a 3D-acquisition technique together with a dual inversion prepulse can decrease the effectiveness of the black blood preparation. To minimize artifacts from insufficiently suppressed blood signal of the nearby blood pools, and to reduce residual respiratory motion artifacts from the chest wall, a novel local inversion technique was implemented. The combination of a nonselective inversion prepulse with a 2D selective local inversion prepulse allowed for suppression of unwanted signal outside a user-defined region of interest. Among 10 subjects evaluated using a 3D-spiral readout, the local inversion pulse effectively suppressed signal from ventricular blood, myocardium, and chest wall tissue in all cases. The coronary vessel wall could be visualized within the entire imaging volume.
Resumo:
The main task of this work has been to investigate the effects of anisotropy onto the propagation of seismic waves along the Upper Mantle below Germany and adjacent areas. Refraction- and reflexion seismic experiments proved the existence of Upper Mantle anisotropy and its influence onto the propagation of Pn-waves. By the 3D tomographic investigations that have been done here for the crust and the upper mantle, considering the influence of anisotropy, a gap for the investigations in Europe has been closed. These investigations have been done with the SSH-Inversionprogram of Prof. Dr. M. Koch, which is able to compute simultaneously the seismic structure and hypocenters. For the investigation, a dataset has been available with recordings between the years 1975 to 2003 with a total of 60249 P- and 54212 S-phase records of 10028 seismic events. At the beginning, a precise analysis of the residuals (RES, the difference between calculated and observed arrivaltime) has been done which confirmed the existence of anisotropy for Pn-phases. The recognized sinusoidal distribution has been compensated by an extension of the SSH-program by an ellipse with a slow and rectangular fast axis with azimuth to correct the Pn-velocities. The azimuth of the fast axis has been fixed by the application of the simultaneous inversion at 25° - 27° with a variation of the velocities at +- 2.5 about an average value at 8 km/s. This new value differs from the old one at 35°, recognized in the initial residual analysis. This depends on the new computed hypocenters together with the structure. The application of the elliptical correction has resulted in a better fit of the vertical layered 1D-Model, compared to the results of preceding seismological experiments and 1D and 2D investigations. The optimal result of the 1D-inversion has been used as initial starting model for the 3D-inversions to compute the three dimensional picture of the seismic structure of the Crust and Upper Mantle. The simultaneous inversion has showed an optimization of the relocalization of the hypocenters and the reconstruction of the seismic structure in comparison to the geology and tectonic, as described by other investigations. The investigations for the seismic structure and the relocalization have been confirmed by several different tests. First, synthetic traveltime data are computed with an anisotropic variation and inverted with and without anisotropic correction. Further, tests with randomly disturbed hypocenters and traveltime data have been proceeded to verify the influence of the initial values onto the relocalization accuracy and onto the seismic structure and to test for a further improvement by the application of the anisotropic correction. Finally, the results of the work have been applied onto the Waldkirch earthquake in 2004 to compare the isotropic and the anisotropic relocalization with the initial optimal one to verify whether there is some improvement.
Resumo:
In the present thesis we address the problem of detecting and localizing a small spherical target with characteristic electrical properties inside a volume of cylindrical shape, representing female breast, with MWI. One of the main works of this project is to properly extend the existing linear inversion algorithm from planar slice to volume reconstruction; results obtained, under the same conditions and experimental setup are reported for the two different approaches. Preliminar comparison and performance analysis of the reconstruction algorithms is performed via numerical simulations in a software-created environment: a single dipole antenna is used for illuminating the virtual breast phantom from different positions and, for each position, the corresponding scattered field value is registered. Collected data are then exploited in order to reconstruct the investigation domain, along with the scatterer position, in the form of image called pseudospectrum. During this process the tumor is modeled as a dielectric sphere of small radius and, for electromagnetic scattering purposes, it's treated as a point-like source. To improve the performance of reconstruction technique, we repeat the acquisition for a number of frequencies in a given range: the different pseudospectra, reconstructed from single frequency data, are incoherently combined with MUltiple SIgnal Classification (MUSIC) method which returns an overall enhanced image. We exploit multi-frequency approach to test the performance of 3D linear inversion reconstruction algorithm while varying the source position inside the phantom and the height of antenna plane. Analysis results and reconstructed images are then reported. Finally, we perform 3D reconstruction from experimental data gathered with the acquisition system in the microwave laboratory at DIFA, University of Bologna for a recently developed breast-phantom prototype; obtained pseudospectrum and performance analysis for the real model are reported.
Resumo:
RESUME Durant les dernières années, les méthodes électriques ont souvent été utilisées pour l'investigation des structures de subsurface. L'imagerie électrique (Electrical Resistivity Tomography, ERT) est une technique de prospection non-invasive et spatialement intégrée. La méthode ERT a subi des améliorations significatives avec le développement de nouveaux algorithmes d'inversion et le perfectionnement des techniques d'acquisition. La technologie multicanale et les ordinateurs de dernière génération permettent la collecte et le traitement de données en quelques heures. Les domaines d'application sont nombreux et divers: géologie et hydrogéologie, génie civil et géotechnique, archéologie et études environnementales. En particulier, les méthodes électriques sont souvent employées dans l'étude hydrologique de la zone vadose. Le but de ce travail est le développement d'un système de monitorage 3D automatique, non- invasif, fiable, peu coûteux, basé sur une technique multicanale et approprié pour suivre les variations de résistivité électrique dans le sous-sol lors d'événements pluvieux. En raison des limitations techniques et afin d'éviter toute perturbation physique dans la subsurface, ce dispositif de mesure emploie une installation non-conventionnelle, où toutes les électrodes de courant sont placées au bord de la zone d'étude. Le dispositif le plus approprié pour suivre les variations verticales et latérales de la résistivité électrique à partir d'une installation permanente a été choisi à l'aide de modélisations numériques. Les résultats démontrent que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle et plus apte à détecter les variations latérales et verticales de la résistivité électrique, et cela malgré la configuration non-conventionnelle des électrodes. Pour tester l'efficacité du système proposé, des données de terrain ont été collectées sur un site d'étude expérimental. La technique de monitorage utilisée permet de suivre le processus d'infiltration 3D pendant des événements pluvieux. Une bonne corrélation est observée entre les résultats de modélisation numérique et les données de terrain, confirmant par ailleurs que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle. La nouvelle technique de monitorage 3D de résistivité électrique permet de caractériser les zones d'écoulement préférentiel et de caractériser le rôle de la lithologie et de la pédologie de manière quantitative dans les processus hydrologiques responsables d'écoulement de crue. ABSTRACT During the last years, electrical methods were often used for the investigation of subsurface structures. Electrical resistivity tomography (ERT) has been reported to be a useful non-invasive and spatially integrative prospecting technique. The ERT method provides significant improvements, with the developments of new inversion algorithms, and the increasing efficiency of data collection techniques. Multichannel technology and powerful computers allow collecting and processing resistivity data within few hours. Application domains are numerous and varied: geology and hydrogeology, civil engineering and geotechnics, archaeology and environmental studies. In particular, electrical methods are commonly used in hydrological studies of the vadose zone. The aim of this study was to develop a multichannel, automatic, non-invasive, reliable and inexpensive 3D monitoring system designed to follow electrical resistivity variations in soil during rainfall. Because of technical limitations and in order to not disturb the subsurface, the proposed measurement device uses a non-conventional electrode set-up, where all the current electrodes are located near the edges of the survey grid. Using numerical modelling, the most appropriate arrays were selected to detect vertical and lateral variations of the electrical resistivity in the framework of a permanent surveying installation system. The results show that a pole-dipole array has a better resolution than a pole-pole array and can successfully follow vertical and lateral resistivity variations despite the non-conventional electrode configuration used. Field data are then collected at a test site to assess the efficiency of the proposed monitoring technique. The system allows following the 3D infiltration processes during a rainfall event. A good correlation between the results of numerical modelling and field data results can be observed since the field pole-dipole data give a better resolution image than the pole-pole data. The new device and technique makes it possible to better characterize the zones of preferential flow and to quantify the role of lithology and pedology in flood- generating hydrological processes.
Resumo:
PURPOSE: Visualization of coronary blood flow by means of a slice-selective inversion pre-pulse in concert with bright-blood coronary MRA. MATERIALS AND METHODS: Coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA) was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered 3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging was performed with and without a slice-selective inversion pre-pulse, which was positioned along the main axis of the coronary artery but perpendicular to the imaging volume. Objective image quality parameters such as SNR, CNR, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: In contrast to conventional bright-blood 3D coronary MRA, the selective inversion pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between the RCA and right ventricular blood pool was increased and the vessels had a tendency towards better delineation. Blood SNR and CNR between right coronary blood and epicardial fat were comparable in both sequences. CONCLUSION: The combination of a free-breathing navigator-gated and cardiac-triggered 3D SSFP sequence with a slice-selective inversion pre-pulse allows for direct and directional visualization of coronary blood flow with the additional benefit of improved contrast between coronary and right ventricular blood pool.
Resumo:
Introduction : Le syndrome de Brugada, décrit en 1992 par Pedro et Josep Brugada, est un syndrome cardiaque caractérisé par un sus-décalage particulier du segment ST associé à un bloc de branche droit atypique au niveau des dérivations ECG V1 à V3. Les altérations ECG du syndrome de Brugada sont classifiées en 3 types dont seul le type 1 est diagnostique. Les mécanismes physiopathologiques exacts de ce syndrome sont pour le moment encore controversés. Plusieurs hypothèses sont proposées dans la littérature dont deux principales retiennent l'attention : 1) le modèle du trouble de repolarisation stipule des potentiels d'action réduits en durée et en amplitude liés à un changement de répartition de canaux potassiques 2) le modèle du trouble de dépolarisation spécifie un retard de conduction se traduisant par une dépolarisation retardée. Dans le STEMI, un sus-décalage ST ressemblant à celui du syndrome de Brugada est expliqué par deux théories : 1) le courant de lésion diastolique suggère une élévation du potentiel diastolique transformé artificiellement en sus-décalage ST par les filtres utilisés dans tous les appareils ECG.¦Objectif : Recréer les manifestations ECG du syndrome de Brugada en appliquant les modifications du potentiel d'action des cardiomyocytes rapportées dans la littérature.¦Méthode : Pour ce travail, nous avons utilisé "ECGsim", un simulateur informatique réaliste d'ECG disponible gratuitement sur www.ecgsim.org. Ce programme est basé sur une reconstruction de l'ECG de surface à l'aide de 1500 noeuds représentant chacun les potentiels d'action des ventricules droit et gauche, épicardiques et endocardiques. L'ECG simulé peut être donc vu comme l'intégration de l'ensemble de ces potentiels d'action en tenant compte des propriétés de conductivité des tissus s'interposant entre les électrodes de surface et le coeur. Dans ce programme, nous avons définit trois zones, de taille différente, comprenant la chambre de chasse du ventricule droit. Pour chaque zone, nous avons reproduit les modifications des potentiels d'action citées dans les modèles du trouble de repolarisation et de dépolarisation et des théories de courant de lésion systolique et diastolique. Nous avons utilisé, en plus des douze dérivations habituelles, une électrode positionnée en V2IC3 (i.e. 3ème espace intercostal) sur le thorax virtuel du programme ECGsim.¦Résultats : Pour des raisons techniques, le modèle du trouble de repolarisation n'a pas pu être entièrement réalisée dans ce travail. Le modèle du trouble de dépolarisation ne reproduit pas d'altération de type Brugada mais un bloc de branche droit plus ou moins complet. Le courant de lésion diastolique permet d'obtenir un sus-décalage ST en augmentant le potentiel diastolique épicardique des cardiomyocytes de la chambre de chasse du ventricule droit. Une inversion de l'onde T apparaît lorsque la durée du potentiel d'action est prolongée. L'amplitude du sus-décalage ST dépend de la valeur du potentiel diastolique, de la taille de la lésion et de sa localisation épicardique ou transmurale. Le courant de lésion systolique n'entraîne pas de sus-décalage ST mais accentue l'amplitude de l'onde T.¦Discussion et conclusion : Dans ce travail, l'élévation du potentiel diastolique avec un prolongement de la durée du potentiel d'action est la combinaison qui reproduit le mieux les altérations ECG du Brugada. Une persistance de cellules de type nodal au niveau de la chambre de chasse du ventricule droit pourrait être une explication à ces modifications particulières du potentiel d'action. Le risque d'arythmie dans la Brugada pourrait également être expliqué par une automaticité anormale des cellules de type nodal. Ainsi, des altérations des mécanismes cellulaires impliqués dans le maintien du potentiel diastolique pourraient être présentes dans le syndrome de Brugada, ce qui, à notre connaissance, n'a jamais été rapporté dans la littérature.
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.