985 resultados para 3D Distribution
Resumo:
The particulate matter distribution (PM) trends that exist in catalyzed particulate filters (CPFs) after loading, passive oxidation, active regeneration, and post loading conditions are not clearly understood. These data are required to optimize the operation of CPFs, prevent damage to the CPFs caused by non-uniform distributions, and develop accurate CPF models. To develop an understanding of PM distribution trends, multiple tests were conducted and the PM distribution was measured in three dimensions using a terahertz wave scanner. The results of this work indicate that loading, passive oxidation, active regeneration, and post loading can all cause non-uniform PM distributions. The density of the PM in the substrate after loading and the amount of PM that is oxidized during passive oxidations and active regenerations affect the uniformity of the distribution. Post loading that occurs after active regenerations result in distributions that are less uniform than post loading that occurs after passive oxidations.
Resumo:
Motivation for the present study is to improve the scienti c understanding on the prominent gap areas in the average three-dimensional distribution of clouds and their impact on the energetics of the earth-atmosphere system. This study is focused on the Indian subcontinent and the surrounding oceans bound within the latitude-longitude bands of 30 S to 30 N and 30 E to 110 E. Main objectives of this study are to : (i) estimate the monthly and seasonal mean vertical distributions of clouds and their spatial variations (which provide the monthly and seasonal mean 3-dimensional distributions of clouds) using multi-year satellite data and investigate their association with the general circulation of the atmosphere, (ii) investigate the characteristics of the `pool of inhibited cloudiness' that appear over the southwest Bay of Bengal during the Asian summer monsoon season (revealed by the 3-dimensional distribution of clouds) and identify the potential mechanisms for its genesis, (iii) investigate the role of SST and atmospheric thermo-dynamical parameters in regulating the vertical development and distribution of clouds, (iv) investigate the vertical distribution of tropical cirrus clouds and their descending nature using lidar observations at Thiruvananthapuram (8.5 N, 77 E), a tropical coastal station at the southwest Peninsular India, and (v) assessment of the impact of clouds on the energetics of the earth-atmosphere system, by estimating the regional seasonal mean cloud radiative forcing at top-of-the-atmosphere (TOA) and latent heating of the atmosphere by precipitating clouds using satellite data
Resumo:
Langerhans cells (LCs) can be targeted with DNA-coated gold micro-projectiles ("Gene Gun") to induce potent cellular and humoral immune responses. It is likely that the relative volumetric distribution of LCs and keratinocytes within the epidermis impacts on the efficacy of Gene Gun immunization protocols. This study quantified the three-dimensional (3D) distribution of LCs and keratinocytes in the mouse skin model with a near-infrared multiphoton laser-scanning microscope (NIR-MPLSM). Stratum corneum (SC) and viable epidermal thickness measured with MPLSM was found in close agreement with conventional histology. LCs were located in the vertical plane at a mean depth of 14.9 mum, less than 3 mum above the dermo-epidermal boundary and with a normal histogram distribution. This likely corresponds to the fact that LCs reside in the suprabasal layer (stratum germinativum). The nuclear volume of keratinocytes was found to be approximately 1.4 times larger than that of resident LCs (88.6 mum3). Importantly, the ratio of LCs to keratinocytes in mouse ear skin (1:15) is more than three times higher than that reported for human breast skin (1:53). Accordingly, cross-presentation may be more significant in clinical Gene Gun applications than in pre-clinical mouse studies. These interspecies differences should be considered in pre-clinical trials using mouse models.
Resumo:
In the intermediary and later stage of oil field development, remaining oil disperses fiercely, the contradiction in the layer has become the main problem and the distribution of remaining oil is transforming to the difference of single sand-body. So, the fine description research of reservoir is becoming a tendency and the methods of remaining oil research need new developments. In the research of “The Single-sand-body Architectural Element and Potentiality Analysis Research of Meandering River, GuDao Oil Field”, the research principle is analytical hierarchy process and schema prescription what are reservoir fine description methods under the condition of dense well pattern. The knowledge of regional sedimentary system and sedimentary facies is the foundation of this research. According to the 3D distribution model of the microfacies sand-body of fluvial facies, stratigraphic unit classification & coenocorrelation of 154 wells are completed in the research of meandering river sand-body in Ng3-4. In this research, the 3D distribution of microfacies sand-body in the main layers are settled. The architectural element model of Ng4 point bar is analysed using the drill core and FMI data. According to the overgrow model of point bar, the surfaces of lateral accretion is traced and the architectural element model of point bar is settled. In the research, the control of micro-facies sand-body of meandering river to the distribution of remaining oil is analysed and the potential area is proposed. All these will play an important role in the development of GuDao oil field. In this research, abundant of logging data, drill core data and production performance data are used to analyse the contributing factor of single sand-body in the Ng3-4 meandering river. Using the technology of geological modeling, all that are researched including the 3D distribution scales of meandering river point bar, the control affection of inner lateral accretion layer to the distribution of oil & gas and remaining. Then, the way of remaining oil development in the sand-body of meandering river is improved. The innovation of the research technology includes (1) the presentation of the conception and research methods of micro-facies sand-body (2) enriching the content of reservoir architectural element research and (3) to renew the research method of remaining oil analysis. The research has practiced with obvious effect.(1)It is deepened into understand the river facies reservoir construction of Gudao oil field, By Building the reservoir construction and studying the effect of diffent deposit or geological interface to fluid partition and to the distribution of the remaining oil, we improved the understanding to the distribution of the remaining oil;(2)By building the distribution mod of the remaining oil in the reservoir construction and making the remaining oil description detailed,the development direction of old oil field is more clear;(3)Expanded the application scales of the horizontal well and enhanced the application effects of the horizontal well technique , we designed and drilled 23 ports horizontal wells in all , the cumulative hydrocarbon production is 10.6*104 t;(4) According to the findings of the internal building structure in reservoir of the fluvial facies in the region of interest, and uniting the injection/production corresponding states、the producing history and the dynamic monitoring documents of the oil/water wells in the flooding units , we researched the residual oil distribution in the point bar , and found the distribution regular patterns of the remaining oil, and comprehended the distribution of the remaining oil . In base of that , we proceeded the optimizing designs of the oil well potentialities , and advanced the effect of the treatment potentials . It is proved that , it was very important that internal building structure research of the single sand body of reservoir for guiding the high efficiency potentialities of the remaining oil in the high water cut stage .
Resumo:
Morgan, H.; Habbal, S. R., An empirical 3D model of the large-scale coronal structure based on the distribution of H? filaments on the solar disk, Astronomy and Astrophysics, Volume 464, Issue 1, March II 2007, pp.357-365
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score.
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
An experimental method for characterizing the time-resolved phase noise of a fast switching tunable laser is discussed. The method experimentally determines a complementary cumulative distribution function of the laser's differential phase as a function of time after a switching event. A time resolved bit error rate of differential quadrature phase shift keying formatted data, calculated using the phase noise measurements, was fitted to an experimental time-resolved bit error rate measurement using a field programmable gate array, finding a good agreement between the time-resolved bit error rates.
Resumo:
Aim: To investigate the effect of implant-abutment angulation and crown material on stress distribution of central incisors. Finite element method was used to simulate the clinical situation of a maxillary right central incisor restored by two different implant-abutment angulations, 15° and 25°, using two different crown materials (IPS E-Max CAD and zirconia). Methods: Two 3D finite element models were specially prepared for this research simulating the abutment angulations. Commercial engineering CAD/CAM package was used to model crown, implant abutment complex and bone (cortical and spongy) in 3D. Linear static analysis was performed by applying a 178 N oblique load. The obtained results were compared with former experimental results. Results: Implant Von Mises stress level was negligibly changed with increasing abutment angulation. The abutment with higher angulation is mechanically weaker and expected to fail at lower loading in comparison with the steeper one. Similarly, screw used with abutment angulation of 25° will fail at lower (about one-third) load value the failure load of similar screw used with abutment angulated by 15°. Conclusions: Bone (cortical and spongy) is insensitive to crown material. Increasing abutment angulation from 15° to 25°, increases stress on cortical bone by about 20% and reduces it by about 12% on spongy bone. Crown fracture resistance is dramatically reduced by increasing abutment angulation. Zirconia crown showed better performance than E-Max one.