16 resultados para 38995
Resumo:
There are only two ways to implement reform in an education system, namely through inservice education of existing teachers and preservice teacher education. Implementing the Australian Curriculum will require targeting both teachers and preservice teachers. Classroom teachers in their roles as mentors have a significant role to play for developing preservice teachers. What mentors do in their mentoring practices and what mentors think about mentoring will impact on the mentoring processes and ultimately reform outcomes. What are mentors’ reports on their mentoring of preservice teachers in science and mathematics? This mixed-method study presents mentors’ reports on their mentoring of primary preservice teachers (mentees) in mathematics (n=43) and science (n=29). Drawing upon a previously validated instrument (Hudson, 2007), this instrument was amended to allow mentors to report on their perceptions of their mentoring. A questionnaire elicited extended written responses that focused on: (1) the mentors’ rapport with their mentees, (2) successful mentoring strategies, (3) aspects that may lead the mentee to feel unsuccessful, and (4) ways to enhance their mentoring skills. Mentors claimed they mentored teaching mathematics more than science. However, 20% or more indicated they did not provide mentoring practices for 25 out of 34 survey items in the science and 9 out of 34 items in the mathematics. Educational reform will necessity mentors to be educated on effective mentoring practices so the mentoring process can be more purposeful. Indeed, mentors who have knowledge of such practices may address the potential issues of more than 20% of mentees not receiving these practices. These mentors also claimed that professional development on effective mentoring can enhance their skills. To ensure the greatest success for an Australian Curriculum will require targeting mentors for professional development in order to assist mentees’ development into the profession.
Resumo:
Raman studies have been carried out on CdSe nanotubes and ZnSe nanorods produced by surfactant-assisted synthesis. The Raman spectrum of CdSe nanotubes shows modes at 207.5 and 198 cm(-1); the former arises from the longitudinal optic phonon mode red-shifted with respect to the bulk mode because of phonon confinement, and the latter is the I = 1 surface phonon. Analysis based on the phonon confinement model demonstrates that the size of the nanoparticle responsible for the red-shift is about 4 nm, close to the estimate from the blue-shift of the photoluminescence. The Raman spectrum of ZnSe,nanorods shows modes at 257 and 213 cm(-1), assigned to longitudinal and transverse optic phonons, blue-shifted with respect to the bulk ZnSe modes because of compressive strain. The mode at 237 cm(-1) is the surface phonon.
Resumo:
聚偏氟乙烯(PVF_2)是一种半结晶聚合物,它至少存在α、β、γ和δ四种晶相结构。其中由于β相与PVF_2的压电性和热电性直接相关而引起人们的广泛关注。通常,PVF_2
Resumo:
Experiencia que propone integrar el estudio de la Naturaleza, como una actividad más del taller de la escuela, y de esta forma, conseguir en el alumno el respeto por el medio ambiente, y que desarrolle destrezas como la observación y el análisis. Se potenciará el trabajo en equipo y la formación de un grupo de profesores que promuevan la innovación educativa. Otros objetivos son: saber distinguir y clasificar algunos animales, aprender las operaciones básicas de un huerto, y promocionar un consumo sano y adecuado. Las actividades se llevarán a cabo en el huerto (transplante de semilleros, abonado, riega, siembra, etc.). Las consecuencias de la puesta en práctica de este taller han sido acercar lo natural al medio urbano, y conseguir una mayor socialización y convivencia de alumnos, padres y profesores..
Resumo:
Some synthetic metals show in addition to good conductivity, high microwave dielectric constants. In this work, it is shown how conduction-electron spin resonance(CESR) lineshape can be affected by these high constants. The conditions for avoiding these effects in the CESR measurements are discussed as well as a method for extracting microwave dielectric constants from CESR lines. (C) 1995 Academic Press, Inc.
Resumo:
Conchocarpus fontanesianus (A. St.-Hill.) Kallunki & Pirani, Rutaceae, popularly known as pitaguará, is a native and endemic tree from São Paulo and Rio de Janeiro States, Brazil. Based in the information that anticholinesterasic derivatives could act as new prototypes to treatment of Alzheimer disease, this work describes the fractionation guided by evaluation of the anticholinesterase activity of the ethanolic stems extract from C. fontanesianus. This procedure afforded the alkaloids dictamnine (1), γ-fagarine (2), skimianine (3), and 2-phenyl-1-methyl-4-quinolone (4), as well as the coumarin marmesin (5).
Resumo:
Von Otto Karrig
Resumo:
El avance tecnológico de los últimos años ha aumentado la necesidad de guardar enormes cantidades de datos de forma masiva, llegando a una situación de desorden en el proceso de almacenamiento de datos, a su desactualización y a complicar su análisis. Esta situación causó un gran interés para las organizaciones en la búsqueda de un enfoque para obtener información relevante de estos grandes almacenes de datos. Surge así lo que se define como inteligencia de negocio, un conjunto de herramientas, procedimientos y estrategias para llevar a cabo la “extracción de conocimiento”, término con el que se refiere comúnmente a la extracción de información útil para la propia organización. Concretamente en este proyecto, se ha utilizado el enfoque Knowledge Discovery in Databases (KDD), que permite lograr la identificación de patrones y un manejo eficiente de las anomalías que puedan aparecer en una red de comunicaciones. Este enfoque comprende desde la selección de los datos primarios hasta su análisis final para la determinación de patrones. El núcleo de todo el enfoque KDD es la minería de datos, que contiene la tecnología necesaria para la identificación de los patrones mencionados y la extracción de conocimiento. Para ello, se utilizará la herramienta RapidMiner en su versión libre y gratuita, debido a que es más completa y de manejo más sencillo que otras herramientas como KNIME o WEKA. La gestión de una red engloba todo el proceso de despliegue y mantenimiento. Es en este procedimiento donde se recogen y monitorizan todas las anomalías ocasionadas en la red, las cuales pueden almacenarse en un repositorio. El objetivo de este proyecto es realizar un planteamiento teórico y varios experimentos que permitan identificar patrones en registros de anomalías de red. Se ha estudiado el repositorio de MAWI Lab, en el que se han almacenado anomalías diarias. Se trata de buscar indicios característicos anuales detectando patrones. Los diferentes experimentos y procedimientos de este estudio pretenden demostrar la utilidad de la inteligencia de negocio a la hora de extraer información a partir de un almacén de datos masivo, para su posterior análisis o futuros estudios. ABSTRACT. The technological progresses in the recent years required to store a big amount of information in repositories. This information is often in disorder, outdated and needs a complex analysis. This situation has caused a relevant interest in investigating methodologies to obtain important information from these huge data stores. Business intelligence was born as a set of tools, procedures and strategies to implement the "knowledge extraction". Specifically in this project, Knowledge Discovery in Databases (KDD) approach has been used. KDD is one of the most important processes of business intelligence to achieve the identification of patterns and the efficient management of the anomalies in a communications network. This approach includes all necessary stages from the selection of the raw data until the analysis to determine the patterns. The core process of the whole KDD approach is the Data Mining process, which analyzes the information needed to identify the patterns and to extract the knowledge. In this project we use the RapidMiner tool to carry out the Data Mining process, because this tool has more features and is easier to use than other tools like WEKA or KNIME. Network management includes the deployment, supervision and maintenance tasks. Network management process is where all anomalies are collected, monitored, and can be stored in a repository. The goal of this project is to construct a theoretical approach, to implement a prototype and to carry out several experiments that allow identifying patterns in some anomalies records. MAWI Lab repository has been selected to be studied, which contains daily anomalies. The different experiments show the utility of the business intelligence to extract information from big data warehouse.