984 resultados para 321005 Fetal Development and Medicine
Resumo:
Interaction of Eph receptor tyrosine kinases with their membrane bound ephrin ligands initiates bidirectional signaling events that regulate cell migratory and adhesive behavior. Whole-mount in situ hybridization revealed overlapping expression of the Epha1 receptor and its high-affinity ligands ephrin A1 (Efna1) and ephrin A3 (Efna3) in the primitive streak and the posterior paraxial mesoderm during early mouse development. These results show complex and dynamic expression for all three genes with expression domains that are successively complementary, overlapping, and divergent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Essential hypertension is one of the most common diseases in the Western world, affecting about 26.4% of the adult population, and it is increasing (1). Its causes are heterogeneous and include genetic and environmental factors (2), but several observations point to an important role of the kidney in its genesis (3). In addition to variations in tubular transport mechanisms that could, for example, affect salt handling, structural characteristics of the kidney might also contribute to hypertension. The burden of chronic kidney disease is also increasing worldwide, due to population growth, increasing longevity, and changing risk factors. Although single-cause models of disease are still widely promoted, multideterminant or multihit models that can accommodate multiple risk factors in an individual or in a population are probably more applicable (4,5). In such a framework, nephron endowment is one potential determinant of disease susceptibility. Some time ago, Brenner and colleagues (6,7) proposed that lower nephron numbers predispose both to essential hypertension and to renal disease. They also proposed that hypertension and progressive renal insufficiency might be initiated and accelerated by glomerular hypertrophy and intraglomerular hypertension that develops as nephron number is reduced (8). In this review, we summarize data from recent studies that shed more light on these hypotheses. The data supply a new twist to possible mechanisms of the Barker hypothesis, which proposes that intrauterine growth retardation predisposes to chronic disease in later life (9). The review describes how nephron number is estimated and its range and some determinants and morphologic correlates. It then considers possible causes of low nephron numbers. Finally, associations of hypertension and renal disease with reduced nephron numbers are considered, and some potential clinical implications are discussed.
Resumo:
Gene expression studies from hematopoietic stem cell (HSC) populations purified to variable degrees have defined a set of sternness genes. Unexpectedly, results also hinted toward a HSC chromatin poised in a wide-open state. With the aim of providing a robust tool for further studies into the molecular biology of HSCs, the studies herein describe the construction and comparative molecular analysis of A-phage cDNA libraries from highly purified HSCs that retained their long-term repopulating activities (long-term HSCs [LT-HSCs]) and from short-term repopulating HSCs that were largely depleted of these activities. Microarray analysis of the libraries confirmed the previous results but also revealed an unforeseen preferential expression of translation- and metabolism-associated genes in the LT-HSCs. Therefore, these data indicate that HSCs are quiescent only in regard of proliferative activities but are in a state of readiness to provide the metabolic and translational activities required after induction of proliferation and exit from the HSC pool.
Resumo:
There is an urgent need for high purity, single chain, fully functional Eph/ephrin membrane proteins. This report outlines the pTIg-BOS-Fc vector and purification approach resulting in rapid increased production of fully functional single chain extracellular proteins that were isolated with high purity and used in structure-function analysis and pre-clinical studies.
Resumo:
Background: Ureaplasma species in amniotic fluid at the time of second-trimester amniocentesis increases the risk of preterm birth, but most affected pregnancies continue to term (Gerber et al. J Infect Dis 2003). We aimed to model intra-amniotic (IA) ureaplasma infection in spiny mice, a species with a relatively long gestation (39 days) that allows investigation of the disposition and possible clearance of ureaplasmas in the feto-placental compartment. Method: Pregnant spiny mice received IA injections of U. parvum serovar 6 (10µL, 1x104 colony-forming-units in PBS) or 10B media (10µL; control) at 20 days (d) of gestation (term=39d). At 37d fetuses (n=3 ureaplasma, n=4 control) were surgically delivered and tissues were collected for; bacterial culture, ureaplasma mba and urease gene expression by PCR, tissue WBC counts and indirect fluorescent antibody (IFA) staining using anti-ureaplasma serovar 6 (rabbit) antiserum. Maternal and fetal plasma IgG was measured by Western blot. Results: Ureaplasmas were not detected by culture or PCR in fetal or maternal tissues but were visualized by IFA within placental and fetal lung tissues, in association with inflammatory changes and elevated WBC counts (p<0.0001). Anti-ureaplasma IgG was detected in maternal (2/2 tested) and fetal (1/2 tested) plasma but not in controls (0/3). Conclusions: IA injection of ureaplasmas in mid-gestation spiny mice caused persistent fetal lung and placental infection even though ureaplasmas were undetectable using standard culture or PCR techniques. This is consistent with resolution of IA infection, which may occur in human pregnancies that continue to term despite detection of ureaplasmas in mid-gestation.
Resumo:
We evaluated associations between the concentrations of heat shock proteins (hsp60 and hsp70) and their respective antibodies, alterations in maternal reproductive performance, and fetal malformations in pregnant rats with hyperglycemia. Mild diabetes (MD) or severe diabetes (SD) was induced in Sprague-Dawley rats prior to mating; non-treated non-diabetic rats (ND) served as controls. On day 21 of pregnancy, maternal blood was analyzed for hsp60 and hsp70 and their antibodies; and fetuses were weighed and analyzed for congenital malformations. Hsp and anti-hsp levels were correlated with blood glucose levels during gestation. There was a positive correlation between hsp60 and hsp70 levels and the total number of malformations (R∈=∈0.5908, P∈=∈0.0024; R∈=∈0.4877, P∈=∈0.0134, respectively) and the number of malformations per fetus (R∈=∈0.6103, P∈=∈0.0015; R∈=∈0.4875, P∈=∈0.0134, respectively). The anti-hsp60 IgG concentration was correlated with the number of malformations per fetus (R∈=∈0.3887, P∈=∈0.0451) and the anti-hsp70 IgG level correlated with the total number of malformations (R∈=∈0.3999, P∈=∈0.0387). Moreover, both hsp and anti-hsp antibodies showed negative correlations with fetal weight. The results suggest that there is a relationship between hsp60 and hsp70 levels and their respective antibodies and alterations in maternal reproductive performance and impaired fetal development and growth in pregnancies associated with diabetes. © 2012 Cell Stress Society International.
Resumo:
Intensive grazing systems for beef females, based on abundant availability of high quality forages and supplementary concentrates, may affect fetal development. The objective of this study was to determine the effect of grazing system on length of gestation, fetal development, and characteristics of the calf at birth. Twenty-four pregnant (bred to Nellore bulls) Nellore females were allocated into two groups. The control group (G1) grazed Brachiaria decumbens (signal grass) in a traditional (extensive) grazing system and the second group (G2) were managed on Panicum maximumcv. Tanzania 1 (Tanzania grass) in an intensive grazing system. Fetal development was evaluated by ultrasonography on days 31, 45, 59, 94, 122, 220, and 255 of gestation. The diameter of the amniotic and allantoic cavities, crown-rump length, circumference, and diameter of the head and ocular orbit were determined. At birth, calves were weighed and height, length, thoracic circumference, and ocular orbit and bi-parietal diameters were measured. There were no differences (P > 0.05) in fetal development. The G1 cows had a longer gestation period (4.5 days; P < 0.05) and their calves had greater (P < 0.05) weight, height, length, and thoracic circumference at birth. In conclusion, Nellore females raised under intensive pasture management conditions, had significantly shorter gestation and smaller calves at birth than those raised under extensive pasture management conditions. Therefore, adoption of new management practices (e.g. intensive pasture management), should take into consideration animal behavior and productivity. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A systematic analysis of parthenogenetic (PG) cell fate within the central nervous system (CNS) was made throughout fetal development and neonatal and adult life. Chimeras were made between PG embryos carrying a ubiquitously expressed lacZ transgene and normal fertilized embryos. After detailed histological analysis, we find that the developmental potential of PG cells is spatially restricted to certain parts of the brain. PG cells are prevalent in telencephalic structures and are largely excluded from diencephalic structures, especially the hypothalamus. These spatial restrictions are established early in development. Behavioral studies with chimeras identified an increase in male aggression when the proportion of PG cells in the brain was high. These studies demonstrate that imprinted genes play key roles in development of the CNS and may be involved in behavior.
Resumo:
Peer reviewed
Resumo:
Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.
Resumo:
The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)