999 resultados para 3-amination


Relevância:

60.00% 60.00%

Publicador:

Resumo:

N-Heterocycles are ubiquitous in biologically active natural products and pharmaceuticals. Yet, new syntheses and modifications of N-heterocycles are continually of interest for the purposes of expanding chemical space, finding quicker synthetic routes, better pharmaceuticals, and even new handles for molecular labeling. There are several iterations of molecular labeling; the decision of where to place the label is as important as of which visualization technique to emphasize.

Piperidine and indole are two of the most widely distributed N-heterocycles and thus were targeted for synthesis, functionalization, and labeling. The major functionalization of these scaffolds should include a nitrogen atom, while the inclusion of other groups will expand the utility of the method. Towards this goal, ease of synthesis and elimination of step-wise transformations are of the utmost concern. Here, the concept of electrophilic amination can be utilized as a way of introducing complex secondary and tertiary amines with minimal operations.

Molecular tags should be on or adjacent to an N-heterocycle as they are normally the motifs implicated at the binding site of enzymes and receptors. The labeling techniques should be useful to a chemical biologist, but should also in theory be useful to the medical community. The two types of labeling that are of interest to a chemist and a physician would be positron emission tomography (PET) and magnetic resonance imaging (MRI).

Coincidentally, the 3-positions of both piperidine and indole are historically difficult to access and modify. However, using electrophilic amination techniques, 3-functionalized piperidines can be synthesized in good yields from unsaturated amines. In the same manner, 3-labeled piperidines can be obtained; the piperidines can either be labeled with an azide for biochemical research or an 18F for PET imaging research. The novel electrophiles, N-benzenesulfonyloxyamides, can be reacted with indole in one of two ways: 3-amidation or 1-amidomethylation, depending on the exact reaction conditions. Lastly, a novel, hyperpolarizable 15N2-labeled diazirine has been developed as an exogenous and versatile tag for use in magnetic resonance imaging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1,3-propanediol was subjected to a range of amination conditions. The N-heterocyclic carbene piano stool complex [Cp*IrCl2(bmim)] was found to be a good catalyst for amination and dehydration in toluene or ionic liquid; product compositions could be tuned by altering the ratio of diol to amine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of a trans-cyclohexanediamine benzimidazole derivative as a hydrogen-bond catalyst for the electrophilic amination of cyclic 1,3-dicarbonyl compounds is herein presented. High yields and enantioselectivities varying from moderate to excellent are generally obtained using mild reaction conditions and as low as 1 mol% of catalyst loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrido[1,2-a]benzimidazoles1, 2a are interesting compounds both from the viewpoint of medicinal chemistry2–7 (solubility,7 DNA intercalation3) and materials chemistry8 (fluorescence). Of note among the former is the antibiotic drug Rifaximin,5 which contains this heteroaromatic core. The classical synthetic approach for the assembly of pyrido[1,2-a]benzimidazoles is by [3+3] cyclocondensation of benzimidazoles containing a methylene group at C2 with appropriate bielectrophiles.2a However, these procedures are often low-yielding, involve indirect/lengthy sequences, and/or provide access to a limited range of products, primarily providing derivatives with substituents located on the pyridine ring (A ring, Scheme 1).2–4 Theoretically, a good alternative synthetic method for the synthesis of pyrido[1,2-a]benzimidazoles with substituents in the benzene ring (C ring) should be accessible by intramolecular transition-metal-catalyzed CN bond formation in N-(2-chloroaryl)pyridin-2-amines, based on chemistry recently developed in our research group.9 These substrates themselves are easily available through SNAr or selective Pd-catalyzed amination10 of 2-chloropyridine with 2-chloroanilines.11 If a synthetic procedure that eliminated the need for preactivation of the 2-position of the 2-chloroarylamino entity could be developed, this would be even more powerful, as anilines are more readily commercially available than 2-chloroanilines. Therefore the synthesis of pyrido[1,2-a]benzimidazoles (4) by a transition-metal-catalyzed intramolecular CH amination approach from N-arylpyridin-2-amines (3) was explored (Scheme 1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ipso/cine ratio in the amination of 5-bromo-2,3-benzo- or 2-bromo-4,5-benzotropone shows a dependence upon the temperature at which the reaction is conducted, changing in favour of the ipso-product when the temperature is maintained high, ruling out an aryne-type mechanism. A comparison of independent mechanisms envisaged for the formation of the two isomeric products suggests a two-part reason: (i) at a higher reaction temperature, C-protonation, a step necessary for the formation of the cine-product, could be retarded when a direct internal mode is interfered with by a less efficient external one, and (ii) reketonisation by elimination of bromide, needed to form the ipso-product, is likely to have a high temperature coefficient enabling the rate of its formation to overtake that of the cine-product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two novel bis(amine anhydride) monomers, N,N'-bis(3,4-dicarboxyphenyl)-1,4-phenylenediamine dianhydride I and N,/N'-bis(3,4-dicarboxyphenyl)-1,3-phenylenediamine dianhydride 11, were prepared via palladium-catalyzed amination reaction of 4-chloro-N-methylphthaliniide with 1,4-phenylenediamine or 1,3-phenylenediamine, followed by alkaline hydrolysis of the intermediate bis(amine imide)s and subsequent dehydration of the resulting tetraacids. A series of new poly(amine imide)s were prepared from the synthesized dianhydride monomers with various diamines in NMP via conventional two-step method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, solventless procedure for reductive amination that results in an impressive color change. Reaction proceeds in three stages: imine formation, reduction, and acetylation and purification is done by crystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crombie, Leslie; Haigh, David; Jones, Raymond C. F.; Mat-Zin, A.Rasid. Dep. Chem., Univ. Nottingham, Nottingham, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) (1993), (17), 2047-54. CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 120:164608 AN 1994:164608 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract The alkaloid homaline I was prepd. in (?) and natural (S,S)-(-) forms. Linking of 2-azacyclooctanone units either directly or successively using 1,4-dihalogenobutanes or 1,4-dihalogenobut-2-ynes is examd. (?)-5-Methyl-4-phenyl-1,5-diazacyclooctan-2-one is first made by a 2,2'-dithiodipyridine/triphenylphosphine-mediated cyclization, and then by amination and transamidative ring expansion from N-(3-chloropropyl)-4-phenylazetidin-2-one in liq. ammonia, followed by N-methylation. Coupling through a 1,4-dihalogenobutane of either the N-methylated azalactam, or the unmethylated azalactam followed by methylation, gave homaline in (?) and meso forms. (R)-(-)-phenylglycine was converted via (S)-?-phenyl-?-alanine into an (S)-?-lactam which was then alkylated with 1-bromo-3-chloropropane, and aminated and ring expanded in liq. ammonia. Coupling of the homochiral azalactam (2 mol) so formed with 1,4-dibromobutane, followed by N-methylation, gave (S,S)-(-)-homaline identical with the natural material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenge of the present work was to synthesize and to characterize new classes of N-containing polymers via palladium-catalyzed aryl amination. This work was inspired by a desire to combine the properties of high-performance polymers such as PEKs with those of N-containing conductive polymers such as polyaniline (PANI), poly(aromatic amides) (PAAs), and the ready synthesis of N-containing simple aromatic compound by the Buchwald-Hartwig reaction. Careful investigation of a model reaction was carried out to provide insights into the formation of side products which will have a negative effect upon the molecular weight or upon the materials properties of the desired polymers in the polycondensation reaction. In this thesis, five new different polymer classes namely, poly(imino ketone)s (PIKs), poly(imino acridine)s (PIAcs), poly(imino azobenzene)s (PIAzos), poly(imino fluorenone)s (PIFOs), and poly(imino carbazole)s (PICs) were synthesized and fully characterized by means of 1H-NMR, elemental analysis, UV, FT-IR, X-ray, GPC, TGA, DSC, DMA, and dielectric spectroscopy. To optimize the polycondensation process, the influence of the concentration, temperature, ligands and the reactivity of the halogen containing monomers were investigated. A temperature of 100-165 °C and a concentration of 30-36 % were found to be optimal for the palladium-catalyzed polycondensation to produce polymer with high molecular weight (Mn = 85 900, Mw = 474 500, DP = 126). Four different ligands were used successfully in the Pd-catalyzed process, of which the Pd/BINAP system was found to be the most effective catalyst, producing the highest yield and highest molecular weight polymers. It was found that the reactivity decreases strongly with increasing electronegativity of the halogen atoms, for example better yields, and higher molecular weights were obtained by using dibromo compounds than dichloro compounds while difluoro compounds were totally unreactive. Polymer analogous transformations, such as the protonation reaction of the ring nitrogens in PIAcs, or of the azobenzene groups of PIAzos, the photo and thermal cis-trans-isomerization of PIAzos, and of poly(imino alcohol)s were also studied. The values of the dielectric constants of PIKs at 1 MHz were in the range 2.71-3.08. These low values of the dielectric constant are lower than that of "H Film", a polyimide Kapton film which is one of the most preferred high-performance dielectrics in microelectronic applications having a dielectric constant of 3.5. In addition to the low values of the dielectric constants, PIKs have lower and glass transition temperatures (Tgs) than arimides such as Kapton which may make them more easily processable. Cyclic voltammetry showed that PICs exhibited low oxidation and reduction potentials and their values were shifted to low values with increasing degree of polymerization i.e. with increasing of the carbazole content in backbone of PICs (PIC-7, 0.44, 0.33 V, DP= 37, PIC-5, 0.63, 0.46, DP= 16, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two series of mesoporous hybrid iron(III) complex–silica aerogels were prepared in one-pot synthesis by using the sol–gel coordination chemistry approach. The use of the ligands 3-(2-aminoethylamino)propyltrimethoxysilane and 2-(diphenylphosphino)ethyltriethoxysilane, both with terminal triethoxysilyl groups, were used to incorporate metal complexes in situ into the framework of silica, through their co-condensation with a silicon alkoxide during the aerogel formation. This methodology yielded optically translucent hybrid mesoporous gels with homogeneous metal incorporation and excellent textural properties. The catalytic performance of these materials was tested in the direct amination of allylic alcohols in water as a target reaction, with activities comparable or even higher than those corresponding to the homogeneous iron(III) complex. Furthermore, these catalysts were stable and maintained their catalytic activity after six reaction cycles.