930 resultados para 3,5-dinitrobenzoic acid
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.
Resumo:
In the title co-crystalline adduct of the drug Dapsone with 3,5-dinitrobenzoic acid, C~12~H~12~N~2~O~2~S . C~7~H~4~N~4~O~6~, the dihedral angle between the two aromatic rings of the Dapsone molecule is 75.4(2)deg. and those between these rings and that of the 3,5-dinitrobenzoic acid are 64.5(2) and 68.4(2)deg. A strong inter-species carboxylic acid O-H---N(amine) hydrogen-bond is found, which together with intermolecular amine N-H...O hydrogen-bonding associations with carboxyl, nitro and sulfone O-atom acceptors as well as weak pi-pi interactions between one of the Dapsone phenyl rings and the 3,5-dinitrobenzoic acid ring [minimum ring centroid separation 3.774(2)Ang.], give a two-dimensional network structure.
Resumo:
The structures of the anhydrous products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with (2-naphthoxy)acetic acid, the 1:1 adduct C8H6BrN3S . C12H10O3 (I) and 3,5-dinitrobenzoic acid, the salt C8H7BrN3S+ C7H3N2O6- (II) have been determined. In the adduct (I), a heterodimer is formed through a cyclic hydrogen-bonding motif [graph set R2/2(8)], involving carboxylic acid O-H...N(hetero)and amine N-H...O(carboxyl) interactions. The heterodimers are essentially planar with a thiadiazole to naphthyl ring dihedral angle of 15.9(2)deg. and the intramolecular thiadiazole to phenyl ring angle of 4.7(2)deg. An amine N-H...N(hetero) hydrogen bond between the heterodimers generates a one-dimensional chain structure extending down [001]. Also present are weak benzene-benzene and naphthalene-naphthalene pi-pi stacking interactions down the b axis [minimum ring centroid separation, 3.936(3) Ang.]. With the salt (II), the cation-anion association is also through a cyclic R2/2(8) motif but involving duplex N-H...O(carboxyl) hydrogen bonds, giving a heterodimer which is close to planar [dihedral angles between the thiadiazole ring and the two benzene rings, 5.00(16)deg. (intra) and 7.23(15)deg. (inter)]. A secondary centrosymmetric cyclic N-H...O(carboxyl) hydrogen-bonding association involving the second amino H-atom generates a heterotetramer. Also present in the crystal are weak pi-pi i-\p interactions between thiadiazolium rings [minimum ring centroid separation, 3.936(3)Ang.], as well as a short Br...O(nitro) interaction [3.314(4)Ang.]. The two structures reported here now provide a total of three crystallographically characterized examples of co-crystalline products from the interaction of 2-amino-5-(4-bromophenyl)-1,3,4-thiadiazole with carboxylic acids, of which only one involves proton-transfer.
Resumo:
The structures of the ammonium salts of 3,5-dinitrobenzoic acid, NH4+ C7H3N2O6- (I), 4-nitrobenzoic acid, NH4+ C7H4N2O4- . 2H2O (II) and 2,4-dichlorobenzoic acid, NH4+ C7H3Cl2O2- . 0.5H2O (III), have been determined and their hydrogen-bonded structures are described. All salts form hydrogen-bonded polymeric structures, three-dimensional in (I) and two-dimensional in (II) and (III). With (I), a primary cation-anion cyclic association is formed [graph set R3/4(10)] through N-H...O hydrogen bonds, involving a carboxyl O,O' group on one side and a single carboxyl O-atom on the other. Structure extension involves both N-H...O hydrogen bonds to both carboxyl and nitro O-atom acceptors. With structure (II), the primary inter-species interactions and structure extension into layers lying parallel to (0 0 1) are through conjoined cyclic hydrogen-bonding motifs: R3/4(10) [one cation, a carboxyl (O,O') group and two water molecules] and centrosymmetric R2/4(8) [two cations and two water molecules]. The structure of (III) also has conjoined R3/4(10) and centrosymmetric R2/4(8) motifs in the layered structure but these differ in that he first involves one cation, a carboxyl (O,O') as well as a carboxyl (O) group and one water molecule, the second, two cations and two carboxyl O-groups. The layers lie parallel to (1 0 0). The structures of the salt hydrates (II) and (III) reported in this work, giving two-dimensional layered arrays through conjoined hydrogen-bonded nets provide further illustrations of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three-dimensional structure of (I) is inconsistent.
Resumo:
The structures of the cocrystalline adducts of 3,5-dinitrobenzoic acid (3,5-DNBA) with 4-aminosalicylic acid (PASA), the 1:1 partial hydrate, C7H4N2O6 .C7H7NO3 . 2H2O, (I) and 2-hydroxy-3-(1H-indol-3-yl)propenoic acid (HIPA) and the 1:1:1 d6-dimethylsulfoxide solvate, C7H4N2O6 . C11H9NO3 . C2D6OS, (II) are reported. The crystal substructure of (I) comprises two centrosymmetric hydrogen-bonded R2/2(8) homodimers, one with 3,5-DNBA, the other with PASA, and an R2/2(8) 3,5-DNBA-PASA heterodimer. In the crystal, inter-unit amine N-H...O and water O-H...O hydrogen bonds generate a three-dimensional supramolecular structure. In (II), the asymmetric unit consists of the three constituent molecules which form an essentially planar cyclic hydrogen-bonded heterotrimer unit [graph set R2/3(17)] through carboxyl, hydroxy and amino groups. These units associate across a crystallographic inversion centre through the HIPA carboxylic acid group in an R2/2~(8) hydrogen-bonding association, giving a zero-dimensional structure lying parallel to (100). In both structures, pi--pi interactions are present [minimum ring centroid separations: 3.6471(18)A in (I) and 3.5819(10)A in (II)].
Resumo:
The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.
Resumo:
In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.
Resumo:
The 1:1 proton-transfer compound of the potent substituted amphetamine hallucinogen (R)-1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-aminopropane (common trivial name 'bromodragonfly') with 3,5-dinitrosalicylic acid, 1-(8-bromobenzo[1,2-b;4,5-b']difuran-4-yl)-2-mmoniopropane 2-carboxy-4,6-dinitrophenolate, C13H13BrNO2+ C7H3N2O7- forms hydrogen-bonded cation-anion chain substructures comprising undulating head-to-tail anion chains formed through C(8) carboxyl O-H...O(nitro) associations and incorporating the aminium groups of the cations. The intra-chain cation-anion hydrogen-bonding associations feature proximal cyclic R33(8) interactions involving both a N+-H...O(phenolate) and the carboxyl O--H...O(nitro)associations. Also present are aromatic pi-pi ring interactions [minimum ring centroid separation, 3.566(2)A; inter-plane dihedral angle, 5.13(1)deg]. A lateral hydrogen-bonding interaction between the third aminium proton and a carboxyl O acceptor link the chain substructures giving a two-dimensional sheet structure. This determination represents the first of any form of this compound and confirms that it has the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen-bonded chain substructures provided by the anions, which accommodate the aminium proton-donor groups of the cations and give cross-linking, and to the presence of cation--anion aromatic ring pi-pi interactions.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (4-carbamoylpiperidine) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C6H13N2O8+ C6H2N3O7- (I) and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate, C6H13N2O8+ C7H3N2O7-: two forms, the monoclinic alpha-polymorph (II) and the triclinic beta-polymorph (III) have been determined at 200 K. All compounds form hydrogen-bonded structures, one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R2/2(14)] through lateral duplex piperidinium N---H...O(amide) interactions. These dimers are extended into a two-dimensional network structure through further interactions with anion phenolate-O and nitro-O acceptors, including a direct symmetric piperidinium N-H...O(phenol),O(nitro) cation--anion association [graph set R2/1(6)]. The monoclinic polymorph (II) has a similar R2/1(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R1/2(4) interaction as well as head-to-tail piperidinium N-H...O(amide) O hydrogen bonds and amide N-H...O(carboxyl) hydrogen bonds, give a network structure which include large R3/4(20) rings. The hydrogen bonding in the triclinic polymorph (III) is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium N-H...O,O'(carboxyl) interactions [graph set R2/1(4)]. The cations also show the zig-zag head-to-tail piperidinium N-H...O(amide) hydrogen-bonded chain substructures found in (II) but in addition feature amide N-H...O(nitro) and O(phenolate) and amide N-H...O(nitro) associations. As well there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R2/4(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Resumo:
The crystal structures of the proton-transfer compounds of 3,5-dinitrosalicylic acid (DNSA) with a series of aniline-type Lewis bases [aniline, 2-hydroxyaniline, 2-methoxyaniline, 3-methoxyaniline, 4-fluoroaniline, 4-chloroaniline and 2-aminoaniline] have been determined and their hydrogen-bonding systems analysed. All are anhydrous 1:1 salts: [(C6H8N)+(C7H3N2O7)-], (1), [(C6H8NO)+(C7H3N2O7)-], (2), [(C7H10NO)+(C7H3N2O7)-], (3), [(C7H10NO)+(C7H3N2O7)-], (4), [(C6H7FN)+(C7H3N2O7)-], (5), [(C6H7ClN)+(C7H3N2O7)-], (6), and [(C6H9N2)+(C7H3N2O7)-], (7) respectively. Crystals of 1 and 6 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/n (2, 4, 5 and 7) or P21 (3). Unit cell dimensions and contents are: for 1, a = 7.2027(17), b = 7.5699(17), c = 12.9615(16) Å, α = 84.464(14), β = 86.387(15), γ = 75.580(14)o, Z = 2; for 2, a = 7.407(3), b = 6.987(3), c = 27.653(11) Å, β = 94.906(7)o, Z = 4; for 3, a = 8.2816(18), b = 23.151(6), c = 3.9338(10), β = 95.255(19)o, Z = 2; for 4, a = 11.209(2), b = 8.7858(19), c = 15.171(3) Å, β = 93.717(4)o, Z = 4; for 5, a = 26.377(3), b = 10.1602(12), c = 5.1384(10) Å, β = 91.996(13)o, Z = 4; for 6, a = 11.217(3), b = 14.156(5), c = 4.860(3) Å, α = 99.10(4), β = 96.99(4), γ = 76.35(2)o, Z = 2; for 7, a = 12.830(4), b = 8.145(3), c = 14.302(4) Å, β = 102.631(6)o, Z = 4. In all compounds at least one primary linear intermolecular N+-H…O(carboxyl) hydrogen-bonding interaction is present which, together with secondary hydrogen bonding results in the formation of mostly two-dimensional network structures, exceptions being with compounds 4 and 5 (one-dimensional) and compound 6 (three-dimensional). In only two cases [compounds 1 and 4], are weak cation-anion or cation-cation π-π interactions found while weak aromatic C-H…O interactions are insignificant. The study shows that all compounds fit the previously formulated classification scheme for primary and secondary interactive modes for proton-transfer compounds of 3,5-dinitrosalicylic acid but there are some unusual variants.
Resumo:
In the structure of the title complex [Cs(C7H3N2O6)(H2O)2]n, the Cs salt of 3,5-dinitrobenzoic acid, the metal complex centres have have irregular CsO8 coordination, comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. Intra-unit O-H...O hydrogen-bonding interactions involving both water molecules are observed in the three-dimensional polymeric complex structure.