532 resultados para 231Pa xs
Resumo:
This study centers on the question: How sensitive are 231Pa/230Th and 10Be/230Th to sediment composition and redistribution? The natural radionuclides 231Pa, 230Th and 10Be recorded in deep sea sediments are tracers for water mass advection and particle fluxes. We investigate the influence of oceanic particle composition on the element adsorption in order to improve our understanding of sedimentary isotope records. We present new data on particle size specific 231Pa and 10Be concentrations. An additional separation step, based on settling velocities, led to the isolation of a very opal-rich phase. We find that opal-rich particles contain the highest 231Pa and 10Be concentrations, and higher 231Pa/230Th and 10Be/230Th isotope ratios than opal-poor particles. The fractionation relative to 230Th induced by the adsorption to opal-rich particles is more pronounced for 231Pa than for 10Be. We conclude that bulk 231Pa/230Th in Southern Ocean sediments is most suitable as a proxy for past opal fluxes. The comparison between two neighboring cores with rapid and slow accumulation rates reveals that these isotope ratios are not influenced significantly by the intensity of sediment focusing at these two study sites. However, a simulation shows that particle sorting by selective removal of sediment (winnowing) could change the isotope ratios. Consequently, 231Pa/230Th should not be used as paleocirculation proxy in cases where a strong loss of opal-rich material due to bottom currents occurred.
Resumo:
A down-core 231Pa/230Th record has been measured from the southwestern Indian Ocean to reconstruct the history of deep water flow into this basin over the last glacial-interglacial cycle. The (231Paxs/230Thxs)0 ratio throughout the record is nearly constant at approximately 0.055, significantly lower than the production ratio of 0.093, indicating that the proxy is sensitive to changes in circulation and/or sediment flux at this site. The consistent value suggests that there has been no change in the inflow of Antarctic Bottom Water to the Indian Ocean during the last 140 ka, in contrast to the changes in deep circulation thought to occur in other ocean basins. The stability of the (231Paxs/230Thxs)0 value in the record contrasts with an existing sortable silt (SS) record from the same core. The observed equation image variability is attributed to a local geostrophic effect amplifying small changes in circulation. A record of authigenic U from the same core suggests that there was reduced oxygen in bottom waters at the core locality during glacial periods. The consistency of the (231Paxs/230Thxs)0 record implies that this could not have arisen by local changes in productivity, thus suggesting a far-field control: either globally reduced bottom water oxygenation or increased productivity south of the Opal Belt during glacials.
Resumo:
The distribution of radioactivities in a large polymetallic encrustation (TECHNO) sampled from the Pacific sea floor has been studied in great detail. The study includes measurements of the long-lived U and Th decay series isotopes, alpha-particle tracks and SUP-10 Be and SUP-26 Al (Results on the latter two cosmonuclides have been reported by Guichard, Reyss and Yokoyama, 1978). The data are discussed in terms of their implication on age dating of the sample. Two interpretations of the data are presented leading to vastly different time scales for the formation of the sample. Here the opinion is divided among the authorship. One group, as well as Guichard et al (1978), favours the million-years scale and the other favors scale measured in thousands of years. The principal pros-and-cons aspects of the two views are mentioned.
Resumo:
High-resolution records of opal, carbonate, and terrigenous fluxes have been obtained from a high-sedimentation rate core (MD84-527: 43°50'S; 51°19'E; 3269 m) by normalization to 230Th. This method estimates paleofluxes to the seafloor on a point-by-point basis and distinguishes changes in sediment accumulation due to variations in vertical rain rates from those due to changes in syndepositional sediment redistribution by bottom currents. We also measured sediment delta15N to evaluate the changes in nitrate utilization in the overlying surface waters associated with paleoflux variations. Our results show that opal accumulation rates on the seafloor during the Holocene and stage 3, based on 14C dating, were respectively tenfold and fivefold higher than the vertical rain rates, At this particular location, changes in opal accumulation on the seafloor appear to be mainly controlled by sediment redistribution by bottom currents rather than variations in opal fluxes from the overlying water column. Correction for syndepositional sediment redistribution and the improved time resolution that can be achieved by normalization to 230Th disclose important variations in opal rain rates. We found relatively high but variable opal paleoflux during stage 3, with two maxima centered at 36 and 30 kyr B.P., low opal paleoflux during stage 2 and deglaciation and a pronounced maximum during the early Holocene, We interpret this record as reflecting variations in opal production rates associated with climate-induced latitudinal migration of the southern ocean frontal system. Sediments deposited during periods of high opal paleoflux also have high authigenic U concentrations, suggesting more reducing conditions in the sediment, and high Pa-231/Th-230 ratios, suggesting increased scavenging from the water column. Sediment delta15N is circa 1.5 per mil higher during isotopic stage 2 and deglaciation. The low opal rain rates recorded during that period appear to have been associated with increased nitrate depletion. This suggests that opal paleofluxes do not simply reflect latitudinal migration of the frontal system but also changes in the structure of the upper water column. Increased stratification during isotopic stage 2 and deglaciation could have been produced by a meltwater lid, leading to lower nitrate supply rates to surface waters.
Resumo:
The (231Pa/230Th)xs,0 records obtained from two cores from the western (MD97-2138; 1°25'S, 146°24'E, 1900 m) and eastern (ODP Leg 138 Site 849, 0°11.59'N, 110°31.18'W, 3851 m) equatorial Pacific display similar variability over the last 85000 years, i.e. from isotopic stages 1 to 5a, with systematically higher values during the Holocene, isotopic stage 3 and isotopic stage 5a, and lower values, approaching the production rate ratio of the two isotopes (0.093), during the colder periods corresponding to isotopic stages 2 and 4. We have also measured the 230Th-normalized biogenic preserved and terrigenous fluxes, as well as major and trace elements concentrations, in both cores. The (231Pa/230Th)xs,0 results combined with the changes in preserved carbonate and opal fluxes at the eastern site indicate lower productivity in the eastern equatorial Pacific during glacial periods. The (231Pa/230Th)xs,0 variations in the western equatorial Pacific (WEP) also seem to be controlled by productivity (carbonate and/or opal). The generally high (231Pa/230Th)xs,0 ratios (>0.093) of the profile could be due to opal and/or MnO2 in the sinking particles. The profiles of (231Pa/230Th)xs,0 and 230Th-normalized fluxes indicate a decrease in exported carbonate, and possibly opal, during isotopic stages 2 and 4 in MD97-2138. Using 230Th-normalized flux, we also show that sediments from the two cores were strongly affected by sediment redistribution by bottom currents suggesting a control of mass accumulation rates by sediment focusing variability.
Resumo:
Fluxes of lithogenicmaterial and fluxes of three palaeo productivity proxies (organic carbon, biogenic opal and alkenones) over the past 100,000 years were determined using the 230Th-normalization method in three sediment cores from the Subantarctic South Atlantic Ocean. Features in the lithogenic flux record of each core correspond to similar features in the record of dust deposition in the EPICA Dome C ice core. Biogenic fluxes correlate with lithogenic fluxes in each sediment core. Our preferred interpretation is that South American dust, most probably from Patagonia, constitutes a major source of lithogenic material in Subantarctic South Atlantic sediments, and that past biological productivity in this region responded to variability in the supply of dust, probably due to biologically available iron carried by the dust. Greater nutrient supply as well as greater nutrient utilization (stimulated by dust) contributed to Subantarctic productivity during cold periods, in contrast to the region south of the Antarctic Polar Front (APF), where reduced nutrient supply during cold periods was the principal factor limiting productivity. The anti-phased patterns of productivity on opposite sides of the APF point to shifts in the physical supply of nutrients and to dust as cofactors regulating productivity in the Southern Ocean.
Resumo:
The major and some of the minor constituents and the rate of accumulation of manganese nodules in the western North Pacific were determined. Manganese concentration in the nodules ranged from 20 to 30 per cent in the acid soluble fraction. As to the rare earth concentration, enrichment of cerium was observed in the manganese nodule as compared with that in shales or sea water. Thorium to uranium ratio in the nodule ranged from 9.4 to 14.3, which was very much higher than that in sea water. From the distribution of excess ionium, excess protactinium and Io/Th ratio, a rate of accumulation of 7 mm per million years was obtained with the surface layer of several mm in thickness of the JEDS-4-E4 nodule.
Resumo:
Drake Passage is a major route for many water masses from the strong Antarctic Circumpolar Current. During the ANTXXIV-3 expedition (in 2008) the vertical distributions of dissolved and size-fractionated particulate 231Pa and thorium isotopes (230Th, 232Th and 234Th) were investigated in order to better define the scavenging regimes and the effects of the oceanic circulation on the fate of particulate material and on the Pa-Th distributions in the water column. The reversible scavenging-model applied to both 230Th and 234Th, in the upper 1500 m depth, gives estimates of the particle dynamics (settling velocities S~ 500-1300 m/y, adsorption and desorption rate constants of 0.1-0.4 1/y and 1-6 1/y respectively). Particulate 234Th/230Th activity ratio shows a depth dependence, with decreasing ratio with increasing depth in agreement with previous studies, but no relationship with particle size was found. 231Pa and thorium isotope fractionation and partition coefficients were investigated with particle size vs depth and latitude and appear to vary horizontally following a North-South gradient. This suggests that both radionuclides are mostly bound to the fine suspended particles. At Drake Passage, the 230Thxs distribution is controlled by a southward upwelling of deep water (clearly visible on the vertical section of total 230Thxs, defined as dissolved + particulate concentrations) and reversible-scavenging processes (linear increase of 230Thxs with increasing depth) with North of the Southern ACC Front, higher settling velocities and less adsorption/desorption cycles, than South of it. Distributions of dissolved and total 231Paxs also reflect the influence of the North-South upwelling but somehow this effect appears to be limited to the upper 1500 m depth of the water column. Below this depth, 231Paxs vertical profiles exhibit contrasted concentrations, with some high dissolved activities in the deep water of the stations in the northern part of the ACC and not South of the ACC. These N-S differences in dissolved 231Paxs were attributed to the different origins and scavenging history of the deep Pacific waters flowing across Drake Passage. Here at North, radionuclides-rich deep water originates from the Central Pacific, while at South, deep water derives from the Southern Pacific in which the observed low radionuclides concentrations are attributed to high opal abundance. South of the Drake Passage, high dissolved and particulate activities of 230Th and 232Th confirmed the intrusion of 230Th-rich Weddell Sea Deep Water (WSDW) close to the Antarctic Peninsula.
Resumo:
Single crystalline ternary ZnxCd1-xS nanocombs, which have 'comb' shaped' teeth on one side, have been synthesized by a one-step metallo-organic chemical vapor deposition process at a low temperature of 420 degrees C. The asymmetric, growth behavior of the nanocombs is likely to be induced by the polarization of the c-ptane. Because of the uniform structure and perfect geometrical shape, the nanoteeth could be potentially useful as nanocantilever arrays for nanosensors and, nanotweezers. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
IEECAS SKLLQG
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s