992 resultados para 210-1276


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 210 is one of very few deep-sea legs drilled along the eastern Canadian continental margin. Most other drilling on this margin has been carried out by the petroleum industry on the shallow-water regions of the Scotian shelf and the Grand Banks (see Doeven, 1983, for nannofossil studies). Deep Sea Drilling Project (DSDP) Leg 12 Site 111 and ODP Leg 105 Site 647 were drilled in the general vicinity of Leg 210 but recovered no appreciable Lower Cretaceous (Albian-Cenomanian) sediments. Site 111 yielded indurated limestones dated tentatively as late Albian-early Cenomanian, whereas Site 647 encountered no Albian-Cenomanian sediments. Two sites (Sites 1276 and 1277) were drilled during Leg 210 in the Newfoundland Basin with the primary objective of recovering basement rocks to elucidate the rifting history of the North Atlantic Basin. The location for Leg 210 was selected because it is conjugate to the Iberia margin, which was drilled extensively during DSDP/ODP Legs 47B, 103, 149, and 173. A secondary but equally important objective was to recover the overlying sediments with the purpose of studying the postrift sedimentation history of this margin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 1276, Leg 210 of the Ocean Drilling Program, was located on the Newfoundland margin in a seismically-defined ~128 Ma "transitional" crust just west of the presumed oceanic crust, and the M3 magnetic anomaly. The goal of drilling on this non-volcanic margin was to study the rifting, nature of basement, and post-rift sedimentation in the Newfoundland-Iberia rift. Drilling of this 1739 m hole was terminated 90-160 m above basement, in the lower of a doublet of alkaline diabase sills. We have carried out geochemical studies of the sill complex, in the hopes that they will provide proxy information regarding the nature of the underlying basement. Excellent 40Ar/39Ar plateau ages were obtained for the two sills: upper sill ~105.3 Ma; lower sill ~97.8 Ma. Thus the sills are substantially younger than the presumed age of the seafloor at site 1276 (~128 Ma), and were intruded beneath substantial sediment overburden (250 m for the upper, older sill, and 575 m for the lower younger sill). While some of the geochemistry of the sills has been compromised by alteration, the "immobile" trace elements show these sills to be hawaiites, differentiated from an enriched alkaline or basanitic parentage. Sr, Nd and Pb isotopes are suggestive of an enriched hotspot/plume mantle source, with a possible "added" component of continental material. These sills unequivocally were not derived from typical MORB (asthenospheric) upper mantle.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 210, a greatly expanded sedimentary sequence of continuous Cretaceous black shales was recovered at Site 1276. This section corresponds to the Hatteras Formation, which has been documented widely in the North Atlantic Ocean. The cored sequence extends from the lowermost Albian, or possibly uppermost Aptian, to the Cenomanian/Turonian boundary and is characterized by numerous gravity-flow deposits and sporadic, finely laminated black shales. The sequence also includes several sedimentary intervals with high total organic carbon (TOC) contents, in several instances of probable marine origin that may record oceanic anoxic events (OAE). These layers might correspond to the Cenomanian-Turonian OAE 2; the mid-Cenomanian event; and OAE 1b, 1c, and 1d in the Albian. In addition, another interval with geochemical characteristics similar to OAE-type layers was recognized in the Albian, although it does not correspond to any of the known OAEs. This study investigates the origin of the organic matter contained within these black shale intervals using TOC and CaCO3 contents, Corg/Ntot ratios, organic carbon and nitrogen isotopes, trace metal composition, and rock-eval analyses. Most of these black shale intervals, especially OAE 2 and 1b, are characterized by low 15N values (<0) commonly observed in mid-Cretaceous black shales, which seem to reflect the presence of an altered nitrogen cycle with rates of nitrogen fixation significantly higher than in the modern ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern thermohaline circulation plays a role in latitudinal heat transport and in deep-ocean ventilation, yet ocean circulation may have functioned differently during past periods of extreme warmth, such as the Cretaceous. The Late Cretaceous (100-65 Ma) was an important period in the evolution of the North Atlantic Ocean, characterized by opening ocean gateways, long-term climatic cooling and the cessation of intermittent periods of anoxia (oceanic anoxic events, OAEs). However, how these phenomena relate to deep-water circulation is unclear. We use a proxy for deep-water mass composition (neodymium isotopes; e-Nd) to show that, at North Atlantic ODP Site 1276, deep waters shifted in the early Campanian (~78-83 Ma) from e-Nd values of ~-7 to values of ~-9, consistent with a change in the style of deep-ocean circulation but >10 Myr after a change in bottom water oxygenation conditions. A similar, but more poorly dated, trend exists in e-Nd data from DSDP Site 386. The Campanian e-Nd transition observed in the North Atlantic records is also seen in the South Atlantic and proto-Indian Ocean, implying a widespread and synchronous change in deep-ocean circulation. Although a unique explanation does not exist for the change at present, we favor an interpretation that invokes Late Cretaceous climatic cooling as a driver for the formation of Southern Component Water, which flowed northward from the Southern Ocean and into the North Atlantic and proto-Indian Oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty samples of siltstones and sandstones were taken from Ocean Drilling Program Site 1276 during Leg 210 for fluid inclusion studies. With the exception of one sample of vein calcite, all inclusions were in quartz grains. The results of fluid-inclusion petrology and microthermometry indicate the presence of three fluid inclusion types (Types 1, 2, and 3). Type 1 fluid inclusions are two-phase (liquid + vapor) aqueous inclusions, and Type 2 inclusions are monophase fluid inclusions (liquid or vapor). These are common in all samples and are formed either as primary isolated inclusions or as secondary inclusions as trails along annealed fractures in the grain. Type 3 fluid inclusions are three-phase (liquid + vapor + solid) inclusions. Type 3 inclusions are rare and are observed as isolated inclusions or in a cluster with other types (i.e., Types 1 and 2). The predominant population throughout the different units sampled is two-phase (liquid + vapor) aqueous fluid inclusions (i.e., Type 1). The temperature of homogenization (TH) bivariate plots for Type 1 inclusions shows dominance throughout the hole of low- to medium-salinity fluids with minimum trapping temperatures between 150° and 400°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mid-Cretaceous is thought to be a greenhouse world with significantly higher atmospheric pCO2 and sea-surface temperatures as well as a much flatter latitudinal thermal gradient compared to the present. This time interval was punctuated by the Cenomanian/Turonian Oceanic Anoxic Event (OAE-2, ~ 93.5 Myr ago), an episode of global, massive organic carbon burial that likely resulted in a large and abrupt pCO2 decline. However, the climatic consequences of this pCO2 drop are yet poorly constrained. We determined the first, high-resolution sea-surface temperature (SST) record across OAE-2 from a deep-marine sedimentary sequence at Ocean Drilling Program (ODP) Site 1276 in the mid-latitudinal Newfoundland Basin, NW Atlantic. By employing the organic palaeothermometer TEX86, we found that SSTs across the OAE-2 interval were extremely high, but were punctuated by a remarkably large cooling (5-11 °C), which is synchronous with the 2.5-5.5 °C cooling in SST records from equatorial Atlantic sites, and the "Plenus Cold Event". Because this global cooling event is concurrent with increased organic carbon burial, it likely acted in response to the associated pCO2 drop. Our findings imply a substantial increase in the latitudinal SST gradient in the proto-North Atlantic during this period of global cooling and reduced atmospheric pCO2, suggesting a strong coupling between pCO2 and latitudinal thermal gradients under greenhouse climate conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sand detrital modes of Albian-Eocene clastic gravity-flow deposits cored and recovered at Ocean Drilling Program Site 1276 reflect the postrift geologic evolution of the Newfoundland passive continental margin. Cretaceous sandstone compositions (average: Q57F23L20; Ls%Lsc = 35; total%bioclasts = 3) are consistent with a source on Grand Banks such as Avalon Uplift. Their relatively low potassium feldspar (Qm71K8P21) contents distinguish them from Iberian sandstones and appear to preclude an easterly source during the early history of the ocean basin. Isolated volcaniclastic input near the Paleocene/Eocene boundary (~60 Ma) at Site 1276 is also present in Iberian samples of this age, suggesting that magmatism was widespread across the North Atlantic during this time frame; the source(s) of this volcanic debris remains equivocal. In the Eocene, the development of carbonate bank facies on the shelf marks a profound compositional change to calcareous grainstones (average: Q27F11L62; Ls%Lsc = 82; total%bioclasts = 55) in basinal gravity-flow deposits at Site 1276. This calcareous petrofacies is present on the Iberian margin and in the Pyrenees, suggesting that it was a regional event. The production and downslope redistribution of carbonate debris, including bioclastic and lithic fragments, was likely eustatically controlled. The Newfoundland (Site 1276 and Jeanne d'Arc Basin) sandstones are mainly quartzolithic. Their composition and the contrast in composition between them and more quartzofeldspathic sandstones from the Iberian margin are likely a product of rifting along a Paleozoic suture zone separating distinct basement terranes. This prerift geologic setting contrasts with that of rifts developed within other cratonic settings with variable amounts of synrift volcanism. When synthesized, the spectrum of synrift and postrift sand compositions produces a general model of passive margin (rift-to-drift) sandstone provenance.