1000 resultados para 2-Hydroxyacetophenone
Resumo:
Three optically active Schiff-base ligands have been prepared by condensation of 2-hydroxyacetophenone with (IR,2R)-(-)-1,2-diaminocyclohexane, (1S,2S)-(-)1,2-diphenylethylenediamine or R-(+)-2,2'-diamino-1,1'-binaphthalene, respectively. The products have been characterized by their IR, H-1- and C-13-NMR spectra.
Resumo:
The work embodied in the thesis is divided into eight chapters. Chapter I gives a brief introduction about metal complexes of thiosemicarbazones, including their structural and bonding properties. Chapter 2 deals with the synthesis and single crystal X-ray diffraction studies of various thiosemicarbazones used up for the present investigations and various characterization techniques. Chapter 3 deals with synthesis, spectral and structural studies of Cu(U) complexes with ONS donor thiosemicarbazones. Chapter 4 deals with synthesis and spectral studies of Ni(II) complexes \vith 2-hydroxyacetophenone N(4)-cyclohexyl thiosemicarbazone as the ligand. Chapter 5 includes synthesis and spectral studies of Mn(II) complexes. Chapter 6 deals with synthesis, spectral and structural studies of Zn(II) complexes. Chapter 7 includes synthesis and spectral studies of oxovanadium(IV) complexes. Chapter 8 deals with synthesis, spectral and single crystal X-ray diffraction studies of dioxomolybdenum(VI) complexes.
Resumo:
Oxovanadium(IV/V) complexes of 2-hydroxyacetophenone- 3-hydroxy-2-naphthoylhydrazone (H2L) have been synthesized and characterized. The complexes were characterized by elemental analyses, IR, electronic and EPR spectra. The oxovanadium(V) complex [VOL (OCH3)] is crystallized in two polymorphic forms, denoted by 1a and 1b, with space groups Pn21a and P 1, respectively. Both have distorted square pyramidal structures.
Resumo:
Two coordination octahedral Sn(IV) complexes [Sn(L)(2)] and cis-[SnCl(2)(L)(dmso)], where H(2)L is 2-hydroxyacetophenone (S-benzydithiocarbazate), were prepared and characterized by elemental analysis, IR, NMR ((1)H, (13)C), (119)Sn Mossbauer spectroscopies and X-ray diffraction techniques to investigate their structural properties. Both crystallize in the Monoclinic system, with parameters: a = 8.1905(3), b = 30.8811(15), c = 12.8959(7) angstrom, beta = 94.465(3)degrees and Z = 4 for [Sn(L)(2)] and a = 8.5247(2), b = 21.5445(7), c = 12.3706(3) angstrom, beta = 96.932(2)degrees and Z = 4 for cis-[SnCl(2)(L)(dmso)]. In both complexes, the Sn(IV) central atom is coordinated in a distorted octahedral geometry with the thiolate ligand (L(2-)) coordinated via O, N and S atoms. The (119)Sn Mossbauer spectroscopy of the complexes were studied and the results revealed that both complexes posses isomer shift (delta) and quadrupole splitting (Delta), which are almost the same.
Resumo:
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 mu M, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Two new copper(II) complexes, [Cu-2(L-1)(2)](ClO4)(2) (1) and [Cu(L-2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through sphenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independe N-(salicylidene) bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5-300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J=-23.6 cm(-1), which is substantiated by a DFT calculation (J=-27.6 cm(-1)) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.
Resumo:
Coordination chemistry of schiff bases is of considerable interest due to their various magnetic, catalytic and biological applications. Here it describes the spectral characterization of schiff bases and its Mn (II), Cu (II) and Ni (II) complexes. Then synthesis and spectral characterization of Zn (II), Cd (II) and Co (II) complexes of schiff base derived from 3-Formylsalicilic Acid and 1,3-diaminopropane. Then it discusses the synthesis and spectral studies of Copper (II) complexes of 2-Hydroxyacetophenone N-phenyl semicarbazone. Finally it discusses the synthesis and spectral characterization of Co (III) complexes of salicylaldehyde N-phenyl semicarbazone. The preparation and characterization of Cobalt (III) complexes of salicylaldehyde, N-phenylthiosemicarbazone containing hetrocyclic bases phenalthroline and bipyridine. Thiocyanate, azide and perchlorate ions act as coligands. Elemental analysis suggests +3 state for Cobalt. HNMR, IR and UV-visible spectra characterize the complexes.
Resumo:
Vanadia/ceria catalysts (2–10 wt% of V2O5) were prepared by wet impregnation of ammonium metavanadate in oxalic acid solution. Structural characterization was done with energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), BET surface area measurements, FT-IR spectroscopy and nuclear magnetic spectral analysis (51V MASNMR). XRD and 51V MASNMR results show highly dispersed vanadia species at lower loadings and the formation of CeVO4 phase at higher V2O5 loading. The catalytic activity of catalysts was conducted in liquid phase oxidation of ethylbenzene with H2O2 as oxidant. The oxidation activity is increased with loading up to 8 wt% V2O5 and then decreased with further increase in V2O5 content to 10 wt%. Different vanadia species evidenced by various techniques were found to be selective towards ethylbenzene oxidation. The CeVO4 formation associated with increased concentration of vanadia on ceria results the production of acetophenone along with 2-hydroxyacetophenone.
Resumo:
Four oxovanadium and one dioxovanadium complex with 2-hydroxyacetophenone N(4)- phenylthiosemicarbazone (H2L) which are represented as [VOLphen]·2H2O (1), [VOLbipy] (2), [VOLdmbipy] (3), [VOL]2 (4) and [VO2HL]·CH3OH (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes 1–4 the ligand coordinates through phenolic oxygen, azomethine nitrogen and thiolate sulfur. But in complex [VO2HL]·CH3OH, coordination takes place in thione form instead of thiolate sulfur. All the complexes except [VO2HL]·CH3OH are EPR active due to the presence of an unpaired electron. In frozen DMF at 77 K, all the oxovanadium(IV) complexes show axial anisotropy with two sets of eight line patterns
Resumo:
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Four tridentate dibasic ONO donor hydrazone ligands derived from the condensation of benzoylhydrazine with either 2-hydroxyacetophenone or its para substituted derivatives (H2L1-4, general abbreviation H2L) have been used as primary ligands and 8-hydroxyquinoline (Hhq, a bidentate monobasic ON donor species) has been used as auxiliary ligand. The reaction of [(VO)-O-IV(acac)21 with H2L in methanol followed by the addition of Hhq in equimolar ratio under aerobic condition afforded the mixed-ligand oxovanadium(V) complexes of the type [(VO)-O-V(L)(hq)] (1-4) in excellent yield. The X-ray structure of the compound [(VO)-O-V(L-4)(hq)] (4) indicates that the H2L4 ligand is bonded with vanadium meridionally in a tridentate dinegative fashion through its deprotonated phenolic-O, deprotonated enolic-O and imine-N atoms. The V-O bond length order is: oxo < phenolato < enolato. H-1 NMR spectra of 4 in CDCl3 solution indicates that it's solid-state structure is retained in solution. Complexes are diamagnetic and exhibit only ligand to metal charge transfer (LMCT) transition band near 530 nm in CH2Cl2 solution in addition to intra-ligand pi-pi* transition band near 335 rim and they display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. lambda(max) (for LMCT transition) and the reduction peak potential (E-p(c)) values of the complexes are found to be linearly related with the Hammett (sigma) constants of the substituents in the aryloxy ring of the hydrazone ligands. lambda(max) and E-p(c) values show large dependence d lambda(max)/d sigma = 32.54 nm and dE(p)(c)/d sigma = 0.19 V, respectively, on the Hammett constant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
[(VO)-O-IV(acac)(2)] reacts with an equimolar amount of benzoyl hydrazones of 2-hydroxyacetophenone (H2L1), 2-hydroxy-5-methylacetophenone (H2L2) and 5-chloro-2-hydroxyacetophenone (H2L4) in methanol to afford the penta-coordinated mixed-ligand methoxy bonded oxidovanadium(V) complexes [(VO)-O-V(L-1)-(OCHA(3))](1). [(VO)-O-V(L-2)(OCH3)](2), and [(VO)-O-V(L-4)(OCH3)](4), respectively, whereas, the similar reaction with the benzoyl hydrazone of 2-hydroxy-5-methoxyacetophenone (H2L3) producing only the hexa-coordinated dimethoxy-bridged dimeric complex [(VO)-O-V(L-3)(OCH3)](2) (3A). Similar type of hexa-coordinated dimeric analogue of 1 i.e., [(VO)-O-V(L-1)(OCH3)](2) (1A) was obtained from the reaction of [(VO)-O-IV(acac)(2)] with the equimolar amount of H2L1 in presence of half equivalent 4,4'-bipyridine in methanol while the decomposition of [(VO)-O-IV(L-2)(bipy)] complex in methanol afforded the dimeric analogue of 2 i.e., [(VO)-O-V(L-2)(OCH3)](2) (2A). All these dimeric complexes 1A-3A react with an excess amount of imidazole in methanol producing the respective monomeric complex. The X-ray structural analysis of 1-3 and their dimeric analogues 1A-3A indicates that the geometry around the vanadium center in the monomeric form is distorted square-pyramidal while that of their respective dimeric forms is distorted octahedral, where the ligands are bonded to vanadium meridionally in their fully deprotonated enol forms. Due to the formation of bridge, the V-O(methoxy) bond in the dimeric complexes is lengthened to such an extent that it becomes equal in length with the V-O(phenolate) bond in 3A and even longer in 1A and 2A, which is unprecedented. The H-1 NMR spectra of the complexes 1A-3A in CDCl3 solution, indicates that these dimeric complexes are converted appreciably into their respective monomeric form. Complexes are electro-active displaying one quasi-reversible reduction peak near +0.25 V versus SCE in CH2Cl2 solution. The E-1/2 values of the complexes show linear relationship with the Hammett parameter (sigma) of the substituents. All these VO3+-complexes are converted to the corresponding complexes with V2O34+ motif simply on refluxing them in acetone and to the complexes with VO2+ motif on reaction with 2 KOH in methanol. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Dinuclear trioxidic [{VOL}(2)mu-O] (1-4) complexes were synthesized from the reaction of [(VO)-O-IV(acac)(2)] with an equimolar amount of H2L [H2L is the general abbreviation of hydrazone ligands (H2L1-4) derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone or its para substituted derivatives] in acetone or CH2Cl2 or acetonitrile. These V2O3L2 complexes were also obtained from the reaction of VOSO4 with H2L in the presence of two equivalents sodium acetate in aqueous-methanolic (50% V/V) medium and also from the decomposition of [(VO)-O-IV(L)(bipy/phen)] complexes in CH2Cl2 Solution. Black monoclinic crystals of 2 and 4 with C2/c space group were obtained from the reaction of [(VO)-O-IV(acac)(2)], respectively, with H2L2 and H2L4 in acetone in which the respective ligands are bonded meridionally to vanadium in their fully deprotonated enol forms. The V-O bond lengths follow the order: V-O(oxo) < V-O(oxo-bridged) < V-O(phenolate) < V-O(enolate). Complexes (1-4) are diamagnetic exhibiting LMCT transition band near 380 nm in CH2Cl2 solution and they are electroactive displaying a quasi-reversible reduction peak in the 0.14-0.30 V versus SCE region. The and the reduction peak potential (E-p(c)) values show linear relationships with the Hammett constant (sigma) of the substituents in the hydrazone ligands. These dinuclear complexes are converted to the corresponding mononuclear cis dioxo complexes K(H2O)(+)[(VO2)-O-V(L)](-) (5-8) and mixed-ligand [(VO)-O-V(L)(hq)] complexes on reaction, respectively, with two equivalents KOH in methanol and two equivalents 8-hydroxyquinoline (Hhq) in CHCl3. Ascorbic acid reduces the dioxovanadium(V) complexes reversibly under aerobic condition. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 ( obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH)L-1.CH3OH and MoO2L, respectively, (where L2-=dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 3 - 10 of the type MoO2LB (where B=gamma-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, ( UV-Vis, IR and H-1 NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH)L-1.CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.