936 resultados para 2-DIPALMITOYL-SN-GLYCERO-3-PHOSPHOCHOLINE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcium-mediated interaction of DNA with monolayers of the non-toxic, zwitterionic phospholipid, 1,2-distearoyl-sn-glycero-3-phosphocholine when mixed with 50 mol% of a second lipid, either the zwitteronic 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or neutral cholesterol was investigated using a combination of surface pressure-area isotherms, Brewster angle microscopy, external reflectance Fourier transform infrared spectroscopy and specular neutron reflectivity in combination with contrast variation. When calcium and DNA were both present in the aqueous subphase, changes were observed in the compression isotherms as well as the surface morphologies of the mixed lipid monolayers. In the presence of calcium and DNA, specular neutron reflectivity showed that directly underneath the head groups of the lipids comprising the monolayers, DNA occupied a layer comprising approximately 13 and 18% v/v DNA for the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesterol-containing monolayers, respectively. The volume of the corresponding layer for 1,2-distearoyl-sn-glycero-3-phosphocholine only containing monolayers was ∼15% v/v DNA. Furthermore regardless of the presence and nature of the second lipid and the surface pressure of the monolayer, the specular neutron reflectivity experiments showed that the DNA-containing layer was 20–27 Å thick, suggesting the presence of a well-hydrated layer of double-stranded DNA. External reflectance Fourier transform infrared studies confirmed the presence of double stranded DNA, and indicated that the strands are in the B-form conformation. The results shed light on the interaction between lipids and nucleic acid cargo as well as the role of a second lipid in lipid-based carriers for drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives - Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6'-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn-glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B–ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods - Liposomal were prepared at a 5?:?1 DDA–TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings - As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion - These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6′-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn- glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B-ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods Liposomal were prepared at a 5: 1 DDA-TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system. © 2013 Royal Pharmaceutical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a simple method of coating a semi-permanent phospholipid layer onto a capillary for electrochromatography use was the focus of this study. The work involved finding good coating conditions, stabilizing the phospholipid coating, and examining the effect of adding divalent cations, cetyltrimethylammonium bromide, and polyethylene glycol (PEG)-lipids on the stability of the coating. Since a further purpose was to move toward more biological membrane coatings, the capillaries were also coated with cholesterol-containing liposomes and liposomes of red blood cell ghost lipids. Liposomes were prepared by extrusion, and large unilamellar vesicles with a diameter of about 100 nm were obtained. Zwitterionic phosphatidylcholine (PC) was used as a basic component, mainly 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) but also eggPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Different amounts of sphingomyelin, bovine brain phosphatidylserine, and cholesterol were added to the PC. The stability of the coating in 40 mM N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES) solution at pH 7.4 was studied by measuring the electroosmotic flow and by separating neutral steroids, basic proteins, and low-molar-mass drugs. The presence of PC in the coating solution was found to be essential to achieving a coating. The stability of the coating was improved by the addition of negative phosphatidylserine, cholesterol, divalent cations, or PEGylated lipids, and by working in the gel-state region of the phospholipid. Study of the effect on the PC coating of divalent metal ions calcium, magnesium, and zinc showed a molar ratio of 1:3 PC/Ca2+ or PC/Mg2+ to give increased rigidity to the membrane and the best coating stability. The PEGylated lipids used in the study were sterically stabilized commercial lipids with covalently attached PEG chains. The vesicle size generally decreased when PEGylated lipids of higher molar mass were present in the vesicle. The predominance of discoidal micelles over liposomes increased PEG chain length and the average size of the vesicles thus decreased. In the capillary electrophoresis (CE) measurements a highly stable electroosmotic flow was achieved with 20% PEGylated lipid in the POPC coating dispersion, the best results being obtained for disteroyl PEG (3000) conjugates. The results suggest that smaller particles (discoidal micelles) result in tighter packing and better shielding of silanol groups on the silica wall. The effect of temperature on the coating stability was investigated by using DPPC liposomes at temperatures above (45 C) and below (25 C) the main phase transition temperature. Better results were obtained with DPPC in the more rigid gel state than in the fluid state: the electroosmotic flow was heavily suppressed and the PC coating was stabilized. Also dispersions of DPPC with 0−30 mol% of cholesterol and sphingomyelin in different ratios, which more closely resemble natural membranes, resulted in stable coatings. Finally, the CE measurements revealed that a stable coating is formed when capillaries are coated with liposomes of red blood cell ghost lipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durant les dernières décennies, la technique Langmuir-Blodgett (LB) s’est beaucoup développée dans l’approche « bottom-up » pour la création de couches ultra minces nanostructurées. Des patrons constitués de stries parallèles d’environ 100 à 200 nm de largeur ont été générés avec la technique de déposition LB de monocouches mixtes de 1,2-dilauroyl-sn-glycéro-3-phosphatidylcholine (DLPC) et de 1,2-dipalmitoyl-sn-glycéro-3-phosphatidylcholine (DPPC) sur des substrats de silicium et de mica. Afin d’amplifier la fonctionnalité de ces patrons, la 1-palmitoyl-2-(16-(S-methyldithio)hexadécanoyl)-sn-glycéro-3-phosphatidylcholine (DSDPPC) et la 1-lauroyl-2-(12-(S-methyldithio)dodédecanoyl)-sn-glycéro-3-phosphatidylcholine (DSDLPC) ont été employées pour la préparation de monocouches chimiquement hétérogènes. Ces analogues de phospholipide possèdent un groupement fonctionnel méthyldisulfide qui est attaché à la fin de l’une des chaînes alkyles. Une étude exhaustive sur la structure de la phase des monocouches Langmuir, Langmuir-Schaefer (LS) et LB de la DSDPPC et de la DSDLPC et leurs différents mélanges avec la DPPC ou la DLPC est présentée dans cette thèse. Tout d’abord, un contrôle limité de la périodicité et de la taille des motifs des stries parallèles de DPPC/DLPC a été obtenu en variant la composition lipidique, la pression de surface et la vitesse de déposition. Dans un mélange binaire de fraction molaire plus grande de lipide condensé que de lipide étendu, une vitesse de déposition plus lente et une plus basse pression de surface ont généré des stries plus continues et larges. L’addition d’un tensioactif, le cholestérol, au mélange binaire équimolaire de la DPPC/DLPC a permis la formation de stries parallèles à de plus hautes pressions de surface. La caractérisation des propriétés physiques des analogues de phospholipides a été nécessaire. La température de transition de phase de la DSDPPC de 44.5 ± 1.5 °C comparativement à 41.5 ± 0.3 °C pour la DPPC. L’isotherme de la DSDPPC est semblable à celui de la DPPC. La monocouche subit une transition de phase liquide-étendue-à-condensée (LE-C) à une pression de surface légèrement supérieure à celle de la DPPC (6 mN m-1 vs. 4 mN m-1) Tout comme la DLPC, la DSDLPC demeure dans la phase LE jusqu’à la rupture de la monocouche. Ces analogues de phospholipide existent dans un état plus étendu tout au long de la compression de la monocouche et montrent des pressions de surface de rupture plus basses que les phospholipides non-modifiés. La morphologie des domaines de monocouches Langmuir de la DPPC et de la DSDPPC à l’interface eau/air a été comparée par la microscopie à angle de Brewster (BAM). La DPPC forme une monocouche homogène à une pression de surface (π) > 10 mN/m, alors que des domaines en forme de fleurs sont formés dans la monocouche de DSDPPC jusqu’à une π ~ 30 mN m-1. La caractérisation de monocouches sur substrat solide a permis de démontrer que le patron de stries parallèles préalablement obtenu avec la DPPC/DLPC était reproduit en utilisant des mélanges de la DSDPPC/DLPC ou de la DPPC/DSDLPC donnant ainsi lieu à des patrons chimiquement hétérogènes. En général, pour obtenir le même état de phase que la DPPC, la monocouche de DSDPPC doit être comprimée à de plus hautes pressions de surface. Le groupement disulfide de ces analogues de phospholipide a été exploité, afin de (i) former des monocouches auto-assemblées sur l’or et de (ii) démontrer la métallisation sélective des terminaisons fonctionnalisées des stries. La spectrométrie de photoélectrons induits par rayons X (XPS) a confirmé que la monocouche modifiée réagit avec la vapeur d’or pour former des thiolates d’or. L’adsorption de l’Au, de l’Ag et du Cu thermiquement évaporé démontre une adsorption préférentielle de la vapeur de métal sur la phase fonctionnalisée de disulfide seulement à des recouvrements sub-monocouche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether to assess the functionality of equipment or as a determinate for the accuracy of assays, reference standards are essential for the purposes of standardisation and validation. The ELISPOT assay, developed over thirty years ago, has emerged as a leading immunological assay in the development of novel vaccines for the assessment of efficacy. However, with its widespread use, there is a growing demand for a greater level of standardisation across different laboratories. One of the major difficulties in achieving this goal has been the lack of definitive reference standards. This is partly due to the ex vivo nature of the assay, which relies on cells being placed directly into the wells. Thus, the aim of this thesis was to produce an artificial reference standard using liposomes, for use within the assay. Liposomes are spherical bilayer vesicles with an enclosed aqueous compartment and therefore are models for biological membranes. Initial work examined pre-design considerations in order to produce an optimal formulation that would closely mimic the action of the cells ordinarily placed on the assay. Recognition of the structural differences between liposomes and cells led to the formulation of liposomes with increased density. This was achieved by using a synthesised cholesterol analogue. By incorporating this cholesterol analogue in liposomes, increased sedimentation rates were observed within the first few hours. The optimal liposome formulation from these studies was composed of 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol (Chol) and brominated cholesterol (Brchol) at a 16:4:12 µMol ratio, based on a significantly higher (p<0.01) sedimentation (as determined by a percentage transmission of 59 ± 5.9 % compared to the control formulation at 29 ± 12 % after four hours). By considering a range of liposome formulations ‘proof of principle’ for using liposomes as ELISPOT reference standards was shown; recombinant IFN? cytokine was successfully entrapped within vesicles of different lipid compositions, which were able to promote spot formation within the ELISPOT assay. Using optimised liposome formulations composed of phosphatidylcholine with or without cholesterol (16 µMol total lipid) further development was undertaken to produce an optimised, scalable protocol for the production of liposomes as reference standards. A linear increase in spot number by the manipulation of cytokine concentration and/or lipid concentrations was not possible, potentially due to the saturation that occurred within the base of wells. Investigations into storage of the formulations demonstrated the feasibility of freezing and lyophilisation with disaccharide cryoprotectants, but also highlighted the need for further protocol optimisation to achieve a robust reference standard upon storage. Finally, the transfer of small-scale production to a medium lab-scale batch (40 mL) demonstrated this was feasible within the laboratory using the optimised protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant defence proteins α1- and α2-purothionin (Pth) are type 1 thionins from common wheat (Triticum aestivum). These highly homologous proteins possess characteristics common amongst antimicrobial peptides and proteins, that is, cationic charge, amphiphilicity and hydrophobicity. Both α1- and α2-Pth possess the same net charge, but differ in relative hydrophobicity as determined by C18 reversed phase HPLC. Brewster angle microscopy, X-ray and neutron reflectometry, external reflection FTIR and associated surface pressure measurements demonstrated that α1 and α2-Pth interact strongly with condensed phase 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) monolayers at the air/liquid interface. Both thionins disrupted the in-plane structure of the anionic phospholipid monolayer, removing lipid during this process and both penetrated the lipid monolayer in addition to adsorbing as a single protein layer to the lipid head-group. However, analysis of the interfacial structures revealed that the α2-Pth showed faster disruption of the lipid film and removed more phospholipid (12%) from the interface than α1-Pth. Correlating the protein properties and lipid binding activity suggests that hydrophobicity plays a key role in the membrane lipid removal activity of thionins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC16:0/18:1) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC18:1/16:0), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, \[PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating \[PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of \[PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry. Grant Number ARC/CE0561607, ARC/DP120102922