943 resultados para 2 sigma range cal. age
Resumo:
We use pollen, stomata and plant-macrofossil records to infer Holocene timberline fluctuations and changes in forest composition at Lac Superieur de Fully (2135 m a.s.l.), a small lake located near the modern regional timberline on a highland plateau in the Central Alps. Our records suggest that during the early Holocene vegetation was rather open on the plateau (eg, heaths of Dryas octopetala, Juniperus nana). The only tree that was able to build major stands was Betula. Other timberline trees (eg, Pinus cembra and Larix) expanded in the catchment of the lake after 8200 cal. BP, when Abies alba expanded at lower elevation. The late appearance of these timberline trees contrasts with previous plant-macrofossil records in the region, which show that the timberline had reached elevations up to at least 2350 m already at 11 000 cal. BP. We suggest that local climatic conditions may have delayed the expansion of closed stands of coniferous trees in the catchment of Lac de Fully until c. 8200 cal. BP, when climate shifted to more humid and less continental conditions. After c. 4600 cal. BP vegetation around the lake primarily responded to human impact, which caused a local lowering of the timberline by at least 150 m.
Resumo:
The Mar del Plata Canyon is located at the continental margin off northern Argentina in a key intermediate and deep-water oceanographic setting. In this region, strong contour currents shape the continental margin by eroding, transporting and depositing sediments. These currents generate various depositional and erosive features which together are described as a Contourite Depositional System (CDS). The Mar del Plata Canyon intersects the CDS, and does not have any obvious connection to the shelf or to an onshore sediment source. Here we present the sedimentary processes that act in the canyon and show that continuous Holocene sedimentation is related to intermediate-water current activity. The Holocene deposits in the canyon are strongly bioturbated and consist mainly of the terrigenous "sortable silt" fraction (10-63 µm) without primary structures, similarly to drift deposits. We propose that the Mar del Plata Canyon interacts with an intermediate-depth nepheloid layer generated by the northward-flowing Antarctic Intermediate Water (AAIW). This interaction results in rapid and continuous deposition of coarse silt sediments inside the canyon with an average sedimentation rate of 160 cm/kyr during the Holocene. We conclude that the presence of the Mar del Plata Canyon decreases the transport capacity of AAIW, in particular of its deepest portion that is associated with the nepheloid layer, which in turn generates a change in the contourite deposition pattern around the canyon. Since sedimentation processes in the Mar del Plata Canyon indicate a response to changes of AAIW contour-current strength related to Late Glacial/Holocene variability, the sediments deposited within the canyon are a great climate archive for paleoceanographic reconstructions. Moreover, an additional involvement of (hemi) pelagic sediments indicates episodic productivity events in response to changes in upper ocean circulation possibly associated with Holocene changes in intensity of El Niño/Southern Oscillation.
Resumo:
There is limited knowledge pertaining to the history of the Greenland Ice Sheet (GIS) during the last glacial-interglacial transition as it retreated from the continental margins to an inland position. Here we use multiproxy data, including ice-rafted debris (IRD); planktonic isotopes; alkenone temperatures; and tephra geochemistry from the northern Labrador Sea, off southwest Greenland, to investigate the deglacial response of the GIS and evaluate its implications for the North Atlantic deglacial development. The results imply that the southern GIS retreated in three successive stages: (1) early deglaciation of the East Greenland margins, by tephra-rich IRD that embrace Heinrich Event 1; (2) progressive retreat during Allerød culminating in major meltwater releases (d18O depletion of 1.2 per mil) at the Allerød-Younger Dryas transition (12.8-13.0 kyr B.P.); and (3) a final stage of glacial recession during the early Holocene (~9-11 kyr B.P.). Rather than indicating local temperatures of ambient surface water, the alkenones likely were transported to the core site by the Irminger Current. We attribute the timing of GIS retreat to the incursion of warm intermediate waters along the base of grounded glaciers and below floating ice shelves on the continental margin. The results lend support to the view that GIS meltwater presented a forcing factor for the Younger Dryas cooling.
Resumo:
We investigated the sedimentary record of Lake Hancza (northeastern Poland) using a multi-proxy approach, focusing on early to mid-Holocene climatic and environmental changes. AMS 14C dating of terrestrial macrofossils and sedimentation rate estimates from occasional varve thickness measurements were used to establish a chronology. The onset of the Holocene at c. 11600 cal. a BP is marked by the decline of Lateglacial shrub vegetation and a shift from clastic-detrital deposition to an autochthonous sedimentation dominated by biochemical calcite precipitation. Between 10000 and 9000 cal. a BP, a further environmental and climatic improvement is indicated by the spread of deciduous forests, an increase in lake organic matter and a 1.7% rise in the oxygen isotope ratios of both endogenic calcite and ostracod valves. Rising d18O values were probably caused by a combination of hydrological and climatic factors. The persistence of relatively cold and dry climate conditions in northeastern Poland during the first one and a half millennia of the Holocene could be related to a regional eastern European atmospheric circulation pattern. Prevailing anticyclonic circulation linked to a high-pressure cell above the retreating Scandinavian Ice Sheet might have blocked the influence of warm and moist Westerlies and attenuated the early Holocene climatic amelioration in the Lake Hancza region until the final decay of the ice sheet.
Resumo:
In northeastern Siberia, Russia, a 1.2 m sediment core was retrieved and radiocarbon dated from a small and shallow lake located at the western side of the lower Lena River (N 69°24', E 123°50', 81 m a.s.l.). The objective of this paper is to reconstruct the palaeoenvironmental variability and to infer major palaeoclimate trends that have occurred since ~ 13.3 cal. kyrs BP. We analysed the diatom assemblages, sedimentology (grain size, total organic carbon (TOC), total nitrogen (TN)), and the elemental and mineralogical composition using X-ray fluorescence (XRF) and X-ray diffractometry (XRD) of the sediment core. Our results show parallel changes in the diatom species composition and sediment characteristics. Enhanced minerogenic sediment input and the occurrence of pyrite is indicative of a cold period between ~ 12.7-11.6 cal. kyrs BP. The diatom data enable a qualitative inference about the local ecological conditions to be made, and reveal an oligotrophic lake system with alkaline and cold conditions during the earliest Holocene. Moderately warmer climates are inferred for the period from ~ 9.1 to 5.7 cal. kyrs BP. The major shift in the diatom assemblage, from dominance of small benthic fragilarioid taxa to a more complex diatom flora with an influx of several achnanthoid and naviculoid diatom species, occurred after a transitional period of about 1400 years (7.1 to 5.7 cal. kyrs BP) at ~ 5.7 cal. kyrs BP, indicating a circumneutral and warmer hydrological regime during the Holocene thermal maximum (HTM). Diatom valve concentrations declined starting ~ 2.8 cal. kyrs BP, but have been rising again since less than or equalt to 600 cal. years BP. This has occurred in parallel to the increased presence of acidophilous diatom taxa (e.g. Eunotia spp.) and decreased presence of small benthic fragilarioid species in the most recent sediments, which is interpreted as the result of neoglacial cooling and subsequent recent climate warming. Our findings are compared to other lake-inferred climate reconstructions along the Lena River. We conclude that the timing and spatial variability of the HTM in the lower Lena River area reveal a temporal delay from north to south.
Resumo:
High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.
Resumo:
Here we present a 1200 yr long benthic foraminiferal Mg/Ca based temperature and oxygen isotope record from a ~900 m deep sediment core off northwest Africa to show that atmosphere-ocean interactions in the eastern subpolar gyre are transferred at central water depth into the eastern boundary of the subtropical gyre. Further we link the variability of the NAO (over the past 165 yrs) and solar irradiance (Late Holocene) and their control on subpolar mode water formation to the multidecadal variability observed at mid-depth in the eastern subtropical gyre. Our results show that eastern North Atlantic central waters cooled by up to ~0.8± 0.7 °C and densities decreased by Sigma theta=0.3±0.2 during positive NAO years and during minima in solar irradiance during the Late Holocene. The presented records demonstrate the sensitivity of central water formation to enhanced atmospheric forcing and ice/freshwater fluxes into the eastern subpolar gyre and the importance of central water circulation for cross-gyre climate signal propagation during the Late Holocene.
Resumo:
On the strongly karstified and almost unvegetated surface of the Zugspitzplatt, at an altitude of about 2290 m in the Wettersteingebirge, there is a doline within which over a period of several thousand years a bed of fine loess-like sediment, almost 1m thick, has accumulated. Notwithstanding the situation of this locality far above the present tree-line, this infill contains quantities of pollen and spores sufficient for pollen analysis without use of any enrichment techniques. Despite poor pollen preservation, it was possible to date the basal layers of this profile on the basis of their pollen assemblages. AMS dating (7415 ± 30 BP) has confirmed that the oldest sediments were laid down during the early Atlantic period, the time of the thermal optimum of the Holocene. At least since that time this site has never been overridden by a glacier. The moraine associated with the Löbben Oscillation between 3400 and 3100 BP - here represented by the so-called Platt Stillstand (Plattstand) - did not quite reach the doline. A diagram shows known Holocene glacial limits. The composition of the pollen assemblages from the two oldest levels with high pollen concentrations strongly suggests that the distance between the doline and the forest was much less during the Atlantic than at present.
Resumo:
Ice-rafting evidence for a '1500-year cycle' sparked considerable debate on millennial-scale climate change and the role of solar variability. Here, we reinterpret the last 70,000 years of the subpolar North Atlantic record, focusing on classic DSDP Site 609, in the context of newly available raw data, the latest radiocarbon calibration (Marine09) and ice core chronology (GICC05), and a wider range of statistical methodologies. A ~1500-year oscillation is primarily limited to the short glacial Stage 4, the age of which is derived solely from an ice flow model (ss09sea), subject to uncertainty, and offset most from the original chronology. Results from the most well-dated, younger interval suggest that the original 1500 ± 500 year cycle may actually be an admixture of the ~1000 and ~2000 cycles that are observed within the Holocene at multiple locations. In Holocene sections these variations are coherent with 14C and 10Be estimates of solar variability. Our new results suggest that the '1500-year cycle' may be a transient phenomenon whose origin could be due, for example, to ice sheet boundary conditions for the interval in which it is observed. We therefore question whether it is necessary to invoke such exotic explanations as heterodyne frequencies or combination tones to explain a phenomenon of such fleeting occurrence that is potentially an artifact of arithmetic averaging.
Resumo:
The relationship of sea-level changes and short-term climatic changes with turbidite deposition is poorly documented, although the mechanisms of gravity-driven sediment transport in submarine canyons during sea-level changes have been reported from many regions. This study focuses on the activity of the Dakar Canyon off southern Senegal in response to major glacial/interglacial sea-level shifts and variability in the NW-African continental climate. The sedimentary record from the canyon allows us to determine the timing of turbidite events and, on the basis of XRF-scanning element data, we have identified the climate signal at a sub-millennial time scale from the surrounding hemipelagic sediments. Over the late Quaternary the highest frequency in turbidite activity in the Dakar Canyon is confined to major climatic terminations when remobilisation of sediments from the shelf was triggered by the eustatic sea-level rise. However, episodic turbidite events coincide with the timing of Heinrich events in the North Atlantic. During these times continental climate has changed rapidly, with evidence for higher dust supply over NW Africa which has fed turbidity currents. Increased aridity and enhanced wind strength in the southern Saharan-Sahelian zone may have provided a source for this dust.
Resumo:
The relationships between thermokarst activity, limnogeological processes and climate change in the Siberian Arctic are not well understood. The objective of this paper is to identify the factors controlling the patterns of deposition, using grain size distribution, organic content, elemental composition and mineralogical composition of a 137-cm long sediment core with a maximum age of ~10.9 cal. kyr BP from Lake El'gene-Kyuele in the tundra of northeastern Siberia. Eight fine sand layers are attributed to depositional events associated with thaw slump activity acting upon orthogonally oriented patterns of ice-wedge networks in the ice-rich permafrost on the NW margin of the lake catchment. Sr/Rb ratios, which correspond to the total feldspar and illite content, serve as high-resolution grain size proxies. The Br content relates to the total organic carbon content, and the Fe/Mn ratio reflects the degree of oxidisation. Our results indicate a relationship between repeated phases of fine sand input and retrogressive thaw slumping dependent on hydroclimate variability and orthogonally oriented ice-wedge networks within the catchment.
Resumo:
Here we present evidence that the Holocene African monsoon system (AMS) varied in response to the eastern equatorial Atlantic sea-surface temperature (SST). Several short-term episodes of decreased moisture availability as a result of low eastern equatorial Atlantic SST are suggested by planktonic foraminiferal Mg/Ca ratios. These episodes promoted a weakening of the AMS and thus determined the timing and intensity of arid periods. Local sea-surface salinities also reveal regional patterns of precipitation in equatorial western Africa. The high eastern equatorial Atlantic SSTs occur in concert with seasonally increased insolation at low latitudes, suggesting a strong response of African monsoonal precipitation to oceanic conditions at low latitudes.
Resumo:
A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.
Resumo:
The Southern Westerly Winds (SWW) exert a crucial influence over the world ocean and climate. Nevertheless, a comprehensive understanding of the Holocene temporal and spatial evolution of the SWW remains a significant challenge due to the sparsity of high-resolution marine archives and appropriate SWW proxies. Here, we present a north-south transect of high-resolution planktonic foraminiferal oxygen isotope records from the western South Atlantic. Our proxy records reveal Holocene migrations of the Brazil- Malvinas Confluence (BMC), a highly sensitive feature for changes in the position and strength of the northern portion of the SWW. Through the tight coupling of the BMC position to the large-scale wind field, the records allow a quantitative reconstruction of Holocene latitudinal displacements of the SWW across the South Atlantic. Our data reveal a gradual poleward movement of the SWW by about 1-1.5° from the early to the mid-Holocene. Afterwards variability in the SWW is dominated by millennial-scale displacements in the order of 1° in latitude with no recognizable longer-term trend. These findings are confronted with results from a state-of-the-art transient Holocene climate simulation using a comprehensive coupled atmosphere-ocean general circulation model. Proxy-inferred and modeled SWW shifts compare qualitatively, but the model underestimates both orbitally forced multi-millennial and internal millennial SWW variability by almost an order of magnitude. The underestimated natural variability implies a substantial uncertainty in model projections of future SWW shifts.
Resumo:
The signature of Dansgaard-Oeschger events - millennial-scale abrupt climate oscillations during the last glacial period - is well established in ice cores and marine records (Labeyrie, 2000, doi:10.1126/science.290.5498.1905; Blunier and Brook, 2001, doi:10.1126/science.291.5501.109: Bond et al., 2001, doi:10.1126/science.1065680). But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of 14C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using 234U/230Th ratios. We find rapid climate oscillations coincident with the established Dansgaard-Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel (Bar-Mathews et al., 2000, doi:10.1016/S0009-2541(99)00232-6), and deep-sea records (Bond et al., 1993, doi:10.1038/365143a0; Shackleton and Hall, 2001, doi:10.1029/2000PA000513), indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 +/-0.6 and 67.4 0.9 kyr ago.