938 resultados para 110101 Medical Biochemistry - Amino Acids and Metabolites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review provides an overview of the distributions, properties and roles of amino acid transport systems in normal and pathological retinal tissues and discusses the roles of specific identified transporters in the mammalian retina. The retina is used in this context as a vehicle for describing neuronal and glial properties. which are in semi, but not all cases comparable to those found elsewhere an the brain. Where significant departures are noted, these are discussed in the context of functional specialisations of the retina and its relationship to adjacent supporting tissues such as the retinal pigment epithelium. Specific examples are given where immunocytochemical labelling for amino acid transporters may yield inaccurate results, possibly because of activity-dependent conformation changes of epitopes in these proteins which render the epitopes more or less accessible to antibodies. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant alterations in glucose and lipid concentrations and their pathways of metabolism are a hallmark of diabetes. However, much less is known about alterations in concentrations of amino acids and their pathways of metabolism in diabetes. In this review we have attempted to highlight, integrate and discuss common alterations in amino acid metabolism in a wide variety of cells and tissues and relate these changes to alterations in endocrine, physiologic and immune function in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active protein-disaggregation by a chaperone network composed of ClpB and DnaK + DnaJ + GrpE is essential for the recovery of stress-induced protein aggregates in vitro and in Escherichia coli cells. K-glutamate and glycine-betaine (betaine) naturally accumulate in salt-stressed cells. In addition to providing thermo-protection to native proteins, we found that these osmolytes can strongly and specifically activate ClpB, resulting in an increased efficiency of chaperone-mediated protein disaggregation. Moreover, factors that inhibited the chaperone network by impairing the stability of the ClpB oligomer, such as natural polyamines, dilution, or high salt, were efficiently counteracted by K-glutamate or betaine. The combined protective, counter-negative and net activatory effects of K-glutamate and betaine, allowed protein disaggregation and refolding under heat-shock temperatures that otherwise cause protein aggregation in vitro and in the cell. Mesophilic organisms may thus benefit from a thermotolerant osmolyte-activated chaperone mechanism that can actively rescue protein aggregates, correctly refold and maintain them in a native state under heat-shock conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of amino acid and/or glucose administration before and during exercise on protein metabolism in visceral tissues and skeletal muscle was examined in mongrel dogs. The dogs were subjected to treadmill running (150 minutes at 10 km/h and 12% incline) and intravenously infused with a solution containing amino acids and glucose (AAG), amino acids (AA), glucose (G) or saline (S) in randomized order. The infusion was started 60 minutes before exercise and continued until the end of the exercise period. An arteriovenous-difference technique was used to estimate both tissue protein degradation and synthesis. When S was infused, the release of leucine (Leu) from the gut and phenylalanine (Phe) from the hindlimb significantly increased during exercise, thus indicating that exercise augmented proteolysis in these tissues. The balance of Leu across the gut during exercise demonstrated a net uptake with both AAG and AA, whereas a net release was observed for G and S. In addition, Leu uptake in the gut during the last 90 minutes of the exercise period tended to be greater with AAG versus AA (P = .06). Phe balance across the hindlimb during the late exercise period showed a significant release with S, AA, and G, whereas the balance with AAG did not show a significant release. These results suggest that exercise-induced proteolysis in the gut may be reduced by supplementation with AA, and this effect may be enhanced by concomitant G administration. However, in skeletal muscle, both AA and G may be required to prevent net protein degradation during exercise. G provided without AA did not achieve net protein synthesis in either tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltammetric technique was used to study the binary and ternary complexes of cadmium with L-amino acids and vitamin-C (L-ascorbic acid) at pH =7.30 ± 0.01, µ = 1.0M KNO3 at 25ºC and 35ºC. Cd (II) formed 1:1:1, 1:1:2 and 1:2:1 complexes with L-lysine, L-ornithine, L-threonine, L-serine, L-phenylglycine, L-phenylalanine, L-glutamic acid and L-aspartic acid used as primary ligands and L-ascorbic acid used as secondary ligand. The trend of stability constant of complexes was L-lysine < L-ornithine < L-threonine < L-serine < L-phenylglycine < L-phenylalanine < L-glutamic acid < L-aspartic acid which can be explained on the basis of size, basicity and steric hindrance of ligands. The values of stability constant (log β) varied from 2.23 to11.33 confirm that these drugs i.e. L-amino acids or in combination with L-ascorbic acid or their complexes could be used against Cd (II) toxicity. The study has been carried out at 35ºC also to determine the thermodynamic parameters such as enthalpy change (ΔH), Free energy change (ΔG) and entropy change (ΔS) respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle theme of this thesis was the synthesis of bioactive compounds. To this end, this work was focus on two main projects. The first one, which was carried out in the Department of Chemistry of the University of Girona under the supervision of Dr Montserrat Heras, concerned the synthesis of new unnatural amino acids bearing a pyrimidine ring within their side chain for incorporation into the antimicrobial peptide BP100 following a rational design in order to improve its biological profile. On the other hand, the second chapter of this thesis was developed in collaboration with the Laboratoire de Chimie Organique (ESPCI-ParisTech, Paris, France) under the guidance of Pr Janine Cossy and Dr Arseniyadis. This chapter was centered on the total synthesis of three marine natural products with complex structures and interesting biological activities: acremolide B, (–) bitungolide F and lyngbouilloside.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies show that the extended structure of dipeptide I Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel P-sheet structure. In dipeptide II Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides I and II form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acrylamide forms from free asparagine and sugars during cooking, and products derived from the grain of cereals, including rye, contribute a large proportion of total dietary intake. In this study, free amino acid and sugar concentrations were measured in the grain of a range of rye varieties grown at locations in Hungary, France, Poland, and the United Kingdom and harvested in 2005, 2006, and 2007. Genetic and environmental (location and harvest year) effects on the levels of acrylamide precursors were assessed. The data showed free asparagine concentration to be the main determinant of acrylamide formation in heated rye flour, as it is in wheat. However, in contrast to wheat, sugar, particularly sucrose, concentration also correlated both with asparagine concentration and with acrylamide formed. Free asparagine concentration was shown to be under genetic (G), environmental (E), and integrated (G × E) control. The same was true for glucose, whereas maltose and fructose were affected mainly by environmental factors and sucrose was largely under genetic control. The ratio of variation due to varieties (genotype) to the total variation (a measure of heritability) for free asparagine concentration in the grain was 23%. Free asparagine concentration was closely associated with bran yield, whereas sugar concentration was associated with low Hagberg falling number. Rye grain was found to contain much higher concentrations of free proline than wheat grain, and less acrylamide formed per unit of asparagine in rye than in wheat flour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diastereoselective conjugate addition of lithium (S)-N-allyl-N-alpha-methylbenzylamide to a range of alpha,beta-unsaturated esters followed by ring closing metathesis is used to afford efficiently a range of substituted cyclic beta-amino esters in high d.e. Alternatively, conjugate addition to alpha,beta-unsaturated Weinreb amides, functional group conversion and ring closing metathesis affords cyclic amines in high d.e. The further application of this methodology to the synthesis of a range of carbocyclic beta-amino esters via conjugate addition, enolate alkylation and ring closing metathesis is also described. Application of this methodology affords, after deprotection, (S)-homoproline, (S)-homopipecolic acid, (S)-coniine and (1S,2S)-trans-pentacin.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disruption of the human immunolobulin E–high affinity receptor I (IgE–FcεRI) protein–protein interaction (PPI) is a validated strategy for the development of anti asthma therapeutics. Here, we describe the synthesis of an array of conformationally constrained cyclic peptides based on an epitope of the A–B loop within the Cε3 domain of IgE. The peptides contain various tolan (i.e., 1,2-biarylethyne) amino acids and their fully and partially hydrogenated congeners as conformational constraints. Modest antagonist activity (IC50 660 μM) is displayed by the peptide containing a 2,2′-tolan, which is the one predicted by molecular modeling to best mimic the conformation of the native A–B loop epitope in IgE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.