1000 resultados para 1-OCTADECANOL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in situ complexation between 2,3,5,6-tetra(2-pyridyl)pyrazine (tppz) molecules and europium ions at the air-liquid interface by means of mixed 1-octadecanol Langmuir films is reported. These films were transferred to solid supports by means of the Langmuir-Blodgett (LB) technique. The EDS maps attested the homogeneity of the LB films as well as the presence of the europium ions. The mixed alcohol/tppz LB film contained a larger amount of europium ions as compared to the pure octadecanol LB film. This work reports the production of a thin luminescent Eu3+ film containing europium ions using only alcohol molecules as ligands an unexpected result, since it is well known that there is an occurrence of non-radiative deactivation of excited europium by hydroxyl groups. Europium ion multiple binding sites were detected from lifetime decay measurements of these films in the presence of tppz molecules. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed monolayers of 1-octadecanol (C18OH) and ethylene glycol monooctadecyl ether (C18E1) were studied to assess their evaporation suppressing performance. An unexpected increase in performance and stability was found around the 0.5:0.5 bicomponent mixture and has been ascribed to a synergistic effect of the monolayers. Molecular dynamics simulations have attributed this to an additional hydrogen bonding interaction between the monolayer and water, due to the exposed ether oxygen of C18E1 in the mixed system compared to the same ether oxygen in the pure C18E1 system. This interaction is maximized around the 0.5:0.5 ratio due to the particular interfacial geometry associated with this mixture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seven chemically designed monolayer compounds were synthesized and investigated with comparison to the properties and water evaporation suppression ability of 1-hexadecanol and 1-octadecanol. Increasing the molecular weight and polarity of the compound headgroup drastically altered the characteristics and performance of the monolayer at the air/water interface. Contrary to the common expectation the monolayer's lifetime on the water surface decreased with increasing number of ethylene oxy moieties, thus optimal performance for water evaporation suppression was achieved when only one ethylene oxy moiety was used. Replacing the hydroxyl headgroup with a methyl group and with multiple ethylene oxy moieties resulted in a loss of suppression capability, while an additional hydroxyl group provided a molecule with limited performance against water evaporation. Theoretical molecular simulation demonstrated that for exceptional performance, a candidate needs to possess a high equilibrium spreading pressure, the ability to sustain a highly ordered monolayer with a stable isotherm curve, and low tilt angle over the full studied range of surface pressures by simultaneously maintaining H-bonding to the water surface and between the monolayer chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of global ocean production and total export production is attributed to oligotrophic oceanic regions due to their vast regional expanse. However, energy transfers, food-web structures and trophic relationships in these areas remain largely unknown. Regional and vertical inter- and intra-specific differences in trophic interactions and dietary preferences of calanoid copepods were investigated in four different regions in the open eastern Atlantic Ocean (38°N to 21°S) in October/November 2012 using a combination of fatty acid (FA) and stable isotope (SI) analyses. Mean carnivory indices (CI) based on FA trophic markers generally agreed with trophic positions (TP) derived from d15N analysis. Most copepods were classified as omnivorous (CI ~0.5, TP 1.8 to ~2.5) or carnivorous (CI >=0.7, TP >=2.9). Herbivorous copepods showed typical CIs of <=0.3. Geographical differences in d15N values of epi- (200-0 m) to mesopelagic (1000-200 m) copepods reflected corresponding spatial differences in baseline d15N of particulate organic matter from the upper 100 m. In contrast, species restricted to lower meso- and bathypelagic (2000-1000 m) layers did not show this regional trend. FA compositions were species-specific without distinct intra-specific vertical or spatial variations. Differences were only observed in the southernmost region influenced by the highly productive Benguela Current. Apparently, food availability and dietary composition were widely homogeneous throughout the oligotrophic oceanic regions of the tropical and subtropical Atlantic. Four major species clusters were identified by principal component analysis based on FA compositions. Vertically migrating species clustered with epi- to mesopelagic, non-migrating species, of which only Neocalanus gracilis was moderately enriched in lipids with 16% of dry mass (DM) and stored wax esters (WE) with 37% of total lipid (TL). All other species of this cluster had low lipid contents (< 10% DM) without WE. Of these, the tropical epipelagic Undinula vulgaris showed highest portions of bacterial markers. Rhincalanus cornutus, R. nasutus and Calanoides carinatus formed three separate clusters with species-specific lipid profiles, high lipid contents (>=41% DM), mainly accumulated as WE (>=79% TL). C. carinatus and R. nasutus were primarily herbivorous with almost no bacterial input. Despite deviating feeding strategies, R. nasutus clustered with deep-dwelling, carnivorous species, which had high amounts of lipids (>=37% DM) and WE (>=54% TL). Tropical and subtropical calanoid copepods exhibited a wide variety of life strategies, characterized by specialized feeding. This allows them, together with vertical habitat partitioning, to maintain high abundance and diversity in tropical oligotrophic open oceans, where they play an essential role in the energy flux and carbon cycling.