997 resultados para 091399 Mechanical Engineering not elsewhere classified
Resumo:
This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.
Resumo:
Some materials exhibit a combustion event during mechanical alloying, which results in the rapid transformation of reactants into products, while others show a slow transformation of reactants into products, In this paper, the continuous W + C --> WC reaction is compared to the Ti + C --> TiC combustion reaction. Rietveld refinement of X-ray diffraction patterns is used to show that these particular reactions proceed through different pathways, determined by crystallographic factors of the reactants. When a crystallographic relationship exists between the reactants and the products, such as that between W and WC, the product forms slowly over a period of time. In contrast, insertion of C into the Ti structure is associated with atomic rearrangements within the crowded lattice planes and the subsequent catastrophic failure of the reactant lattices results in combustion to form TiC. (C) 2001 Academic Press.
Resumo:
Granular gamma-Al2O3 support and 8 wt % CuO/gamma-Al2O3 catalyst were synthesized by a sol-gel granulation method. The pore structure, crush strength, hardness, and elasticity of these sol-gel-derived catalysts were studied and compared with similar commercial catalysts prepared by non-sol-gel methods. Alumina and CuO-coated alumina granular particles prepared by different methods have different macro- and microstructure. The sol-gel-derived granular gamma-alumina and CuO-coated gamma-alumina granular particles have a structure defined by compact packing of uniform, nanosized gamma-alumina crystallites. They are characterized by a more uniform pore size distribution and larger surface area as compared to similar commercial samples with a structure defined by packing of aggregates consisting of nonuniform gamma-alumina crystallites. Because of the differences in the macro- and microstructure, the sol-gel-derived granular samples offer higher crush strength and greater hardness than the commercial samples.
Resumo:
Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.
Resumo:
Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid-fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid-fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong 'film state'. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile 'detergent state'. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid-fluid interfaces more generally.
Resumo:
We present the first characterization of the mechanical properties of lysozyme films formed by self-assembly at the air-water interface using the Cambridge interfacial tensiometer (CIT), an apparatus capable of subjecting protein films to a much higher level of extensional strain than traditional dilatational techniques. CIT analysis, which is insensitive to surface pressure, provides a direct measure of the extensional stress-strain behavior of an interfacial film without the need to assume a mechanical model (e.g., viscoelastic), and without requiring difficult-to-test assumptions regarding low-strain material linearity. This testing method has revealed that the bulk solution pH from which assembly of an interfacial lysozyme film occurs influences the mechanical properties of the film more significantly than is suggested by the observed differences in elastic moduli or surface pressure. We have also identified a previously undescribed pH dependency in the effect of solution ionic strength on the mechanical strength of the lysozyme films formed at the air-water interface. Increasing solution ionic strength was found to increase lysozyme film strength when assembly occurred at pH 7, but it caused a decrease in film strength at pH 11, close to the pI of lysozyme. This result is discussed in terms of the significant contribution made to protein film strength by both electrostatic interactions and the hydrophobic effect. Washout experiments to remove protein from the bulk phase have shown that a small percentage of the interfacially adsorbed lysozyme molecules are reversibly adsorbed. Finally, the washout tests have probed the role played by additional adsorption to the fresh interface formed by the application of a large strain to the lysozyme film and have suggested the movement of reversibly bound lysozyme molecules from a subinterfacial layer to the interface.
Resumo:
The effects of over-doped yttrium on the microstructure, mechanical properties and thermal behaviour of an oxygen-contaminated Zr51Cu20.7Ni12Al16.3 bulk metallic glass are studied systematically. It has been found that, when yttrium doping is beyond the optimum doping, the glass-forming ability enhancement effect induced by yttrium addition decreases and the mechanical properties are adversely affected. In this study, a new phase with an orthorhombic structure (a = 0.69 nm, b = 0.75 nm and c = 0.74 nm) is identified in the yttrium over-doped alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed.
Resumo:
One of the main objectives of the first International Junior Researcher and Engineer Workshop on Hydraulic Structures is to provide an opportunity for young researchers and engineers to present their research. But a research project is only completed when it has been published and shared with the community. Referees and peer experts play an important role to control the research quality. While some new electronic tools provide further means to disseminate some research information, the quality and impact of the works remain linked with some thorough expert-review process and the publications in international scientific journals and books. Importantly unethical publishing standards are not acceptable and cheating is despicable.
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.
Impact of Commercial Search Engines and International Databases on Engineering Teaching and Research
Resumo:
For the last three decades, the engineering higher education and professional environments have been completely transformed by the "electronic/digital information revolution" that has included the introduction of personal computer, the development of email and world wide web, and broadband Internet connections at home. Herein the writer compares the performances of several digital tools with traditional library resources. While new specialised search engines and open access digital repositories may fill a gap between conventional search engines and traditional references, these should be not be confused with real libraries and international scientific databases that encompass textbooks and peer-reviewed scholarly works. An absence of listing in some Internet search listings, databases and repositories is not an indication of standing. Researchers, engineers and academics should remember these key differences in assessing the quality of bibliographic "research" based solely upon Internet searches.
Resumo:
For centuries, hydraulic engineers were at the forefront of science. The last forty years marked a change of perception in our society with a focus on environmental sustainability and management, particularly in developed countries. Herein, the writer illustrates his strong belief that the future of hydraulic engineering lies upon a combination of innovative engineering, research excellence and higher education of quality. This drive continues a long tradition established by eminent scholars like Arthur Thomas IPPEN, John Fisher KENNEDY and Hunter ROUSE.