1000 resultados para 0402 Geochemistry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research suggests that future decreases in the carbonate saturation state of surface seawater associated with the projected build-up of atmospheric CO2 could cause a global decline in coral reef-building capacity. Whether significant reductions in coral calcification are underway is a matter of considerable debate. Multicentury records of skeletal calcification extracted from massive corals have the potential to reconstruct the progressive effect of anthropogenic changes in carbonate saturation on coral reefs. However, early marine aragonite cements are commonly precipitated from pore waters in the basal portions of massive coral skeletons and, if undetected, could result in apparent nonlinear reductions in coral calcification toward the present. To address this issue, we present records of coral skeletal density, extension rate, calcification rate, δ13C, and δ18O for well preserved and diagenetically altered coral cores spanning ∼1830-1994 A.D. at Ningaloo Reef Marine Park, Western Australia. The record for the pristine coral shows no significant decrease in skeletal density or δ13C indicative of anthropogenic changes in carbonate saturation state or δ13C of surface seawater (oceanic Suess effect). In contrast, progressive addition of early marine inorganic aragonite toward the base of the altered coral produces an apparent ∼25% decrease in skeletal density toward the present, which misleadingly matches the nonlinear twentieth century decrease in coral calcification predicted by recent modeling and experimental studies. In addition, the diagenetic aragonite is enriched in 13C, relative to coral aragonite, resulting in a nonlinear decrease in δ13C toward the present that mimics the decrease in δ13C expected from the oceanic Suess effect. Taken together, these diagenetic changes in skeletal density and δ13C could be misinterpreted to reflect changes in surface-ocean carbonate saturation state driven by the twentieth century build-up of atmospheric CO2. Copyright 2004 by the American Geophysical Union.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alteration zones at the gold-rich Bajo de la Alumbrera porphyry copper deposit in northwestern Argentina are centered on several porphyritic intrusions. They are zoned from a central copper-iron sulfide and gold-mineralized potassic (biotite-K-feldspar +/- quartz) core outward to propylitic (chlorite-illite-epidote-calcite) assemblages. A mineralized intermediate argillic alteration assemblage (chlorite-illite +/- pyrite) has overprinted the potassic alteration zone across the top and sides of the deposit and is itself zoned outward into phyllic (quartzinuscovite-illite +/- pyrite) alteration. This study contributes new data to previously reported delta(18)O and delta D compositions of fluids responsible for the alteration at Bajo de la Alumbrera, and the data are used to infer likely ore-forming processes. Measured and calculated delta(18)O and delta D values of fluids (+8.3 to +10.2 and -33 to -81 parts per thousand, respectively) confirm a primary magmatic origin for the earliest potassic alteration phase. Lower temperature potassic alteration formed from magmatic fluids with lower delta D values (down to -123 parts per thousand). These depleted compositions are distinct from meteoric water and consistent with degassing and volatile exsolution of magmatic fluids derived from an underlying magma. Variability in the calculated composition of fluid associated with potassic alteration is explained in terms of phase separation (or boiling). if copper-iron sulfide deposition occurred during cooling (as proposed elsewhere), this cooling was largely a result of phase separation. Magmatic water was directly involved in the formation of overprinting intermediate argillic alteration assemblages at Bajo de la Alumbrera. Calculated delta(18)O and delta D values of fluids associated with this alteration range from +4.8 to +8.1 and -31 to -71 per mil, respectively Compositions determined for fluids associated with phyllic alteration (-0.8 to +10.2 and -31 to -119 parts per thousand) overlap with the values determined for the intermediate argillic alteration. We infer that phyllic alteration assemblages developed during two stages; the first was a high-temperature (400 degrees-300 degrees C) stage with D-depleted water (delta D = -66 to -119 parts per thousand). This compositional range may have resulted from magma degassing and/or the injection of new magmatic water into a compositionally evolved hydrothermal system. The isotopic variations also can be explained by increased fluid-rock interaction. The second stage of phyllic alteration occurred at a lower temperature (similar to 200 degrees C), and variations in the modeled isotopic compositions imply mixing of magmatic and meteoric waters. Ore deposition that occurred late in the evolution of the hydrothermal system was probably associated with further cooling of the magmatic fluid, in part caused by fluid-rock interaction and phase separation. Changing pH and/or oxygen fuoracity may have caused additional ore deposition. The ingress of meteoric water appears to postdate the bulk of mineralization and occurred as the system at Bajo de la Alumbrera waned.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To evaluate the extent of human impact on a pristine Antarctic environment, natural baseline levels of trace metals have been established in the basement rocks of the Larsemann Hills, East Antarctica. From a mineralogical and geochemical point of view the Larsemann Hills basement is relatively homogeneous, and contains high levels of Pb, Th and U. These may become soluble during the relatively mild Antarctic summer and be transported to lake waters by surface and subsurface melt water. Melt waters may also be locally enriched in V, Cr, Co, Ni, Zn and Sri derived from weathering of metabasite pods. With a few notable exceptions, the trace metal concentrations measured in the Larsemann Hills lake waters can be entirely accounted for by natural processes such as sea spray and surface melt water input. Thus, the amount of trace metals released by weathering of basement lithologies and dispersed into the Larsemann Hills environment, and presumably in similar Antarctic environments, is, in general, not negligible, and may locally be substantial. The Larsemann Hills sediments are coarse-grained and contain minute amounts of clay-size particles, although human activities have contributed to the generation of fine-grained material at the most impacted sites. Irrespective of their origin, these small amounts of fine-grained clastic sediments have a relatively small surface area and charge, and are not as effective metal sinks as the abundant, thick cyanobacterial algal mats that cover the lake floors. Thus, the concentration of trace metals in the Larsemann Hills lake waters is regulated by biological activity and thawing-freezing cycles, rather than by the type and amount of clastic sediment supply. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents the first attempt to constrain the evolution of the North Anatolian Fault Zone (NAFZ) by age dating and isotope tracing of clay minerals formed during near-surface faulting. Extensive illitic clay mineralisation occurred along the NAFZ related to hydrothermal alteration of the fault gouges and pseudotachylytes. Samples representing the pre-fault protoliths outside the fault zone do not contain authigenic illitic clay minerals indicating that hydrothermal processes were confined to the areas within the fault zone. K-Ar age data indicate that the hydrothermal system and the associated illite authigenesis initiated at similar to 57 Ma. This process is interpreted to reflect the onset of significant strike-slip or transtensional faulting immediately after the continental collision related to the closure of the Neotethys Ocean. Following the initiation of the fault movements in the latest Paleocene-Early Eocene, displacements along the NAFZ have continued, with probably intensified fault activities at similar to 26 Ma and later than similar to 8 Ma. Oxygen isotope compositions of the illitic clays from different locations along the NAFZ are similar, with narrow ranges in delta O-18 values indicating clay precipitation from fluids with similar oxygen isotope compositions and crystallisation temperatures. The delta O-18 and delta D values of the calculated fluid isotopic composition (delta O-18=5.9 parts per thousand to 11.2 parts per thousand, delta D=-59 parts per thousand to -73 parts per thousand) are consistent with metamorphic and magmatic origin of fluids mobilised during active tectonism. The interpretation of the fluid flow history of the NAFZ is in agreement with that reported previously for some well-known large-scale high-angle fault zones, which similarly developed along collisional-type orogenic belts and are commonly associated with significant mesothermal ore mineralisation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Granadilla eruption at 600 ka was one of the largest phonolitic explosive eruptions from the Las Cañadas volcano on Tenerife, producing a classical plinian eruptive sequence of a widespread pumice fall deposit overlain by an ignimbrite. The eruption resulted in a major phase of caldera collapse that probably destroyed the shallow-level magma chamber system. Granadilla pumices contain a diverse phenocryst assemblage of alkali feldspar + biotite + sodian diopside to aegirine–augite + titanomagnetite + ilmenite + nosean/haüyne + titanite + apatite; alkali feldspar is the dominant phenocryst and biotite is the main ferromagnesian phase. Kaersutite and partially resorbed plagioclase (oligoclase to sodic andesine) are present in some eruptive units, particularly in pumice erupted during the early plinian phase, and in the Granadilla ignimbrite at the top of the sequence. Associated with the kaersutite and plagioclase are small clots of microlitic plagioclase and kaersutite interpreted as quenched blebs of tephriphonolitic magma within the phonolite pumice. The Granadilla Member has previously been recognized as an example of reverse-then-normal compositional zonation, where the zonation is primarily expressed in terms of substantial variations in trace element abundances with limited major element variation (cryptic zonation). Evidence for cryptic zonation is also provided by the chemistry of the phenocryst phases, and corresponding changes in intensive parameters (e.g. T, f O2, f  H2O). Geothermometry estimates indicate that the main body of phonolite magma had a temperature gradient from 860 °C to ∼790 °C, with hotter magma (≥900 °C) tapped at the onset and terminal phases of the eruption. The reverse-then-normal chemical and thermal zonation reflects the initial tapping of a partially hybridized magma (mixing of phonolite and tephriphonolite), followed by the more sequential tapping of a zoned and relatively large body of highly evolved phonolite at a new vent and during the main plinian phase. This suggests that the different magma types within the main holding chamber could have been laterally juxtaposed, as well as in a density-stratified arrangement. Correlations between the presence of mixed phenocryst populations (i.e. presence of plagioclase and kaersutite) and coarser pumice fall layers suggest that increased eruption vigour led to the tapping of hybridized and/or less evolved magma probably from greater depths in the chamber. New oxygen isotope data for glass and mineral separates preclude syn-eruptive interaction between the vesiculating magma and hydrothermal fluids as the cause of the Sr isotope disequilibrium identified previously for the deposit. Enrichment in radiogenic Sr in the pumice glass has more likely been due to low-temperature exchange with meteoric water that was enriched in 87Sr by sea spray, which may be a common process affecting porous and glassy pyroclastic deposits on oceanic islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth element geochemistry in carbonate rocks is utilized increasingly for studying both modern oceans and palaeoceanography, with additional applications for investigating water–rock interactions in groundwater and carbonate diagenesis. However, the study of rare earth element geochemistry in ancient rocks requires the preservation of their distribution patterns through subsequent diagenesis. The subjects of this study, Pleistocene scleractinian coral skeletons from Windley Key, Florida, have undergone partial to complete neomorphism from aragonite to calcite in a meteoric setting; they allow direct comparison of rare earth element distributions in original coral skeleton and in neomorphic calcite. Neomorphism occurred in a vadose setting along a thin film, with degradation of organic matter playing an initial role in controlling the morphology of the diagenetic front. As expected, minor element concentrations vary significantly between skeletal aragonite and neomorphic calcite, with Sr, Ba and U decreasing in concentration and Mn increasing in concentration in the calcite, suggesting that neomorphism took place in an open system. However, rare earth elements were largely retained during neomorphism, with precipitating cements taking up excess rare earth elements released from dissolved carbonates from higher in the karst system. Preserved rare earth element patterns in the stabilized calcite closely reflect the original rare earth element patterns of the corals and associated reef carbonates. However, minor increases in light rare earth element depletion and negative Ce anomalies may reflect shallow oxidized groundwater processes, whereas decreasing light rare earth element depletion may reflect mixing of rare earth elements from associated microbialites or contamination from insoluble residues. Regardless of these minor disturbances, the results indicate that rare earth elements, unlike many minor elements, behave very conservatively during meteoric diagenesis. As the meteoric transformation of aragonite to calcite is a near worst case scenario for survival of original marine trace element distributions, this study suggests that original rare earth element patterns may commonly be preserved in ancient limestones, thus providing support for the use of ancient marine limestones as proxies for marine rare earth element geochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blooms of the toxic cyanobacterium majuscula Lyngbya in the coastal waters of southeast Queensland have caused adverse impacts on both environmental health and human health, and on local economies such as fishing and tourism. A number of studies have confirmed that the main limiting nutrients (“nutrients of concern”) that contribute to these blooms area Fe, DOC, N, P and also pH. This study is conducted to establish the distribution of these parameters in a typical southeast Queensland coastal setting. The study maps the geochemistry of shallow groundwater in the mainland Pumicestone catchment with an emphasis on the nutrients of concern to understand how these nutrients relate to aquifer materials, landuse and anthropogenic activities. The results of the study form a GIS information layer which will be incorporated into a larger GIS model being produced by Queensland Department of Environment and Resource Management (DERM) to support landuse management to avoid/minimize blooms of Lyngbya in Moreton Bay, southeast Queensland, and other similar settings. A total of 38 boreholes were established in the mainland Pumicestone region and four sampling rounds of groundwater carried out in both dry and wet conditions. These groundwater samples were measured in the field for physico-chemical parameters, and in the laboratory analyses for the nutrients of concern, and other major and minor ions. Aquifer materials were confirmed using the Geological Survey of Queensland digital geology map, and geomaterials were assigned to seven categories which are A (sands), B (silts, sandy silts), C (estuarine mud, silts), D (humid soils), E (alluvium), F (sandstone) and G (other bedrock). The results of the water chemistry were examined by use of the software package AquaChem/AqQA, and divided into six groundwater groups, based on groundwater chemical types and location of boreholes. The type of aquifer material and location, and proximity to waterways was found to be important because they affected physico-chemical properties and concentrations of nutrients of concern and dissolved ions. The analytical results showed that iron concentrations of shallow groundwaters were high due to acid sulfate soils, and also mud and silt, but were lower in sand materials. DOC concentrations of these shallow groundwaters in the sand material were high probably due to rapid infiltration. In addition, DOC concentrations in some boreholes were high because they were installed in organic rich wetlands. The pH values of boreholes were from acidic to near neutral; some boreholes with pH values were low (< 4), showing acid sulfate soils in these boreholes. Concentrations of total nitrogen and total phosphorus of groundwaters were generally low, and the main causes of elevated concentrations of total nitrogen and total phosphorus are largely due to animal and human wastes and tend to be found in localized source areas. Comparison of the relative percentage of nitrogen species (NH3/NH4< Org-N, NO3-N and NO2-N) demonstrated that they could be related to sources such as animal waste, residential and agricultural fertilizers, forest and vegetation, mixed residents and farms, and variable setting and vegetation covers. Total concentrations of dissolved ions in sampling round 3 (dry period) were higher than those in sampling round 2 (wet period) due to both evaporation of groundwater in the dry period and the dilution of rainfall in the wet period. This showed that the highest concentrations of nutrients of concern were due to acid sulfate soils, aquifer materials, landuse and anthropogenic activities and were typically in aquifer materials of E (alluvium) and C (estuarine muds) and locations of Burpengary, Caboolture, and Glass Mountain catchments.