Clay mineralogical and isotopic (K-Ar, delta O-18, delta D) constraints on the evolution of the North Anatolian Fault Zone, Turkey


Autoria(s): Uysal, I. T.; Mutlu, H.; Altunel, E.; Karabacak, V.; Golding, S. D.
Contribuinte(s)

H. Elderfield

V. Courtillot

Data(s)

01/01/2006

Resumo

This study presents the first attempt to constrain the evolution of the North Anatolian Fault Zone (NAFZ) by age dating and isotope tracing of clay minerals formed during near-surface faulting. Extensive illitic clay mineralisation occurred along the NAFZ related to hydrothermal alteration of the fault gouges and pseudotachylytes. Samples representing the pre-fault protoliths outside the fault zone do not contain authigenic illitic clay minerals indicating that hydrothermal processes were confined to the areas within the fault zone. K-Ar age data indicate that the hydrothermal system and the associated illite authigenesis initiated at similar to 57 Ma. This process is interpreted to reflect the onset of significant strike-slip or transtensional faulting immediately after the continental collision related to the closure of the Neotethys Ocean. Following the initiation of the fault movements in the latest Paleocene-Early Eocene, displacements along the NAFZ have continued, with probably intensified fault activities at similar to 26 Ma and later than similar to 8 Ma. Oxygen isotope compositions of the illitic clays from different locations along the NAFZ are similar, with narrow ranges in delta O-18 values indicating clay precipitation from fluids with similar oxygen isotope compositions and crystallisation temperatures. The delta O-18 and delta D values of the calculated fluid isotopic composition (delta O-18=5.9 parts per thousand to 11.2 parts per thousand, delta D=-59 parts per thousand to -73 parts per thousand) are consistent with metamorphic and magmatic origin of fluids mobilised during active tectonism. The interpretation of the fluid flow history of the NAFZ is in agreement with that reported previously for some well-known large-scale high-angle fault zones, which similarly developed along collisional-type orogenic belts and are commonly associated with significant mesothermal ore mineralisation. (c) 2005 Elsevier B.V. All rights reserved.

Identificador

http://espace.library.uq.edu.au/view/UQ:83104

Idioma(s)

eng

Publicador

Elsevier BV

Palavras-Chave #Geochemistry & Geophysics #North Anatolian Fault Zone #Illitic Clay Minerals #Hydrothermal #K-ar Dating #Delta O-18 And Delta D #Fluid Flow #Permian Coal Measures #Bowen Basin #Alpine Fault #New-zealand #Illite #Earthquake #Australia #Slip #Geochemistry #Queensland #C1 #040203 Isotope Geochemistry #040303 Geochronology #0402 Geochemistry
Tipo

Journal Article