950 resultados para wrist joint angle measurement
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
This paper presents a unified framework using the unit cube for measurement, representation and usage of the range of motion (ROM) of body joints with multiple degrees of freedom (d.o.f) to be used for digital human models (DHM). Traditional goniometry needs skill and kn owledge; it is intrusive and has limited applicability for multi-d.o.f. joints. Measurements using motion capture systems often involve complicated mathematics which itself need validation. In this paper we use change of orientation as the measure of rotation; this definition does not require the identification of any fixed axis of rotation. A two-d.o.f. joint ROM can be represented as a Gaussian map. Spherical polygon representation of ROM, though popular, remains inaccurate, vulnerable due to singularities on parametric sphere and difficult to use for point classification. The unit cube representation overcomes these difficulties. In the work presented here, electromagnetic trackers have been effectively used for measuring the relative orientation of a body segment of interest with respect to another body segment. The orientation is then mapped on a surface gridded cube. As the body segment is moved, the grid cells visited are identified and visualized. Using the visual display as a feedback, the subject is instructed to cover as many grid cells as he can. In this way we get a connected patch of contiguous grid cells. The boundary of this patch represents the active ROM of the concerned joint. The tracker data is converted into the motion of a direction aligned with the axis of the segment and a rotation about this axis later on. The direction identifies the grid cells on the cube and rotation about the axis is represented as a range and visualized using color codes. Thus the present methodology provides a simple, intuitive and accura te determination and representation of up to 3 d.o.f. joints. Basic results are presented for the shoulder. The measurement scheme to be used for wrist and neck, and approach for estimation of the statistical distribution of ROM for a given population are also discussed.
Resumo:
Hybrid opto-digital joint transform correlator (HODJTC) is effective for image motion measurement, but it is different from the traditional joint transform correlator because it only has one optical transform and the joint power spectrum is directly input into a digital processing unit to compute the image shift. The local cross-correlation image can be directly obtained by adopting a local Fourier transform operator. After the pixel-level location of cross-correlation peak is initially obtained, the up-sampling technique is introduced to relocate the peak in even higher accuracy. With signal-to-noise ratio >= 20 dB, up-sampling factor k >= 10 and the maximum image shift <= 60 pixels, the root-mean-square error of motion measurement accuracy can be controlled below 0.05 pixels.
Resumo:
This paper investigates the effects of antenna detuning on wireless devices caused by the presence of the human body,particularly the wrist. To facilitate repeatable and consistent antenna impedance measurements, an accurate and low cost human phantom arm, that simulates human tissue at 433MHz frequencies, has been developed and characterized. An accurate and low cost hardware prototype system has been developed to measure antenna return loss at a frequency of 433MHz and the design, fabrication and measured results are presented. This system provides a flexible means of evaluating closed-loop reconfigurable antenna tuning circuits for use in wireless mote applications.
Resumo:
In this paper, we present an inertial-sensor-based monitoring system for measuring the movement of human upper limbs. Two wearable inertial sensors are placed near the wrist and elbow joints, respectively. The measurement drift in segment orientation is dramatically reduced after a Kalman filter is applied to estimate inclinations using accelerations and turning rates from gyroscopes. Using premeasured lengths of the upper and lower arms, we compute the position of the wrist and elbow joints via a proposed kinematic model. Experimental results demonstrate that this new motion capture system, in comparison to an optical motion tracker, possesses an RMS position error of less than 0.009 m, with a drift of less than 0.005 ms-1 in five daily activities. In addition, the RMS angle error is less than 3??. This indicates that the proposed approach has performed well in terms of accuracy and reliability.
Resumo:
OBJECTIVE:
To design a system of gonioscopy that will allow greater interobserver reliability and more clearly defined screening cutoffs for angle closure than current systems while being simple to teach and technologically appropriate for use in rural Asia, where the prevalence of angle-closure glaucoma is highest.
DESIGN:
Clinic-based validation and interobserver reliability trial.
PARTICIPANTS:
Study 1: 21 patients 18 years of age and older recruited from a university-based specialty glaucoma clinic; study 2: 32 patients 18 years of age and older recruited from the same clinic.
INTERVENTION:
In study 1, all participants underwent conventional gonioscopy by an experienced observer (GLS) using the Spaeth system and in the same eye also underwent Scheimpflug photography, ultrasonographic measurement of anterior chamber depth and axial length, automatic refraction, and biometric gonioscopy with measurement of the distance from iris insertion to Schwalbe's line using a reticule based in the slit-lamp ocular. In study 2, all participants underwent both conventional gonioscopy and biometric gonioscopy by an experienced gonioscopist (NGC) and a medical student with no previous training in gonioscopy (JK).
MAIN OUTCOME MEASURES:
Study 1: The association between biometric gonioscopy and conventional gonioscopy, Scheimpflug photography, and other factors known to correlate with the configuration of the angle. Study 2: Interobserver agreement using biometric gonioscopy compared to that obtained with conventional gonioscopy.
RESULTS:
In study 1, there was an independent, monotonic, statistically significant relationship between biometric gonioscopy and both Spaeth angle (P = 0.001, t test) and Spaeth insertion (P = 0.008, t test) grades. Biometric gonioscopy correctly identified six of six patients with occludable angles according to Spaeth criteria. Biometric gonioscopic grade was also significantly associated with the anterior chamber angle as measured by Scheimpflug photography (P = 0.005, t test). In study 2, the intraclass correlation coefficient between graders for biometric gonioscopy (0.97) was higher than for Spaeth angle grade (0.72) or Spaeth insertion grade (0.84).
CONCLUSION:
Biometric gonioscopy correlates well with other measures of the anterior chamber angle, shows a higher degree of interobserver reliability than conventional gonioscopy, and can readily be learned by an inexperienced observer.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: This study analyzed the phase-angle (PA) values of hospitalized HVI-infected patients by comparing them with those reported for a healthy population and investigated their relation with nutritional parameters.Methods: This is a cross-sectional study including 101 hospitalized patients diagnosed with HIV infection and evaluated by bioimpedance, anthropometry and biochemical tests. The phase angle values, weight loss percentage (%WL), body mass index (BMI), arm muscle circumference (AMC), tricipital skinfold (TSF), body fat percentage (%BF) and albumin were considered. In order to compare with values for the healthy population, the PA z-score of the patients under study was calculated. Spearman's correlation and the multiple linear regression model were used to identify nutritional parameters associated with the PA z-score.Results: The patients showed a mean PA z-score of -2.6 +/- 1.5, and only 6.6% of them with a positive value. The PA z-score values correlated with %WL (r = -0.51; p < 0.0001), albumin (r = 0.49; p < 0.0001), BMI (r = 0.58; p < 0.0001), AMC (r = 0.41; p < 0.0001), TSF (r = 0.47; p < 0.001) and %BF (r = 0.48, p < 0.0001). In multiple analysis %WL (p = 0.008), albumin (p = 0.01), AMC (p < 0.0001) and %BF (p = 0.0003) remained associated with the score.Conclusions: Low PA z-score values were observed, suggesting a worse clinical prognosis for the patients. The inclusion of the PA z-score as a nutritional indicator during care provision to HIV-infected patients is recommended. (Nutr Hosp. 2012;27:771-774) DOI:10.3305/nh.2012.27.3.5684
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The papers shows, through theoretical studies and simulations, that using the description of the plant by Takagi-Sugeno (T-S), it is possible to design a nonlinear controller to control the position of the leg of a paraplegic patient. The control system was designed to change the angle of the joint knee of 60 degrees. This is the first study that describes the application of Takagi-Sugeno (T-S) models in this kind of problem.
Resumo:
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.