973 resultados para wasp venom toxins
Resumo:
Natural (NV) and Cobalto60-irradiated (IrV) Crotalus durissus terrificus venom were used to evaluate serum production capacity of sheep and possible hematological and biochemical effects. Freeze-dried venom aliquots were diluted in acidified saline solution (NaCl 150 mM, pH 3.0) and irradiated by a Cobalt 60 source at a dose of 5.54 x 102 Gy/h and a concentration of 2.000 Gy. Twelve sheep were divided into two groups of six animals. One group received irradiated venom (IrV) and the other natural venom (NV). Three antigen doses (venom) were administered at monthly intervals. Blood samples were collected weekly for analysis of serum neutralization potency and capacity, complete blood count (CBC), total plasma protein, fibrinogen, albumin, and globulin. At the end of the experiment, the animals were challenged with a LD50 for sheep and showed no signs of envenoming. The two groups did not present clinical alterations. Results of the total leukocyte count did not present interaction or time factor effect for both groups, but there was a different action between them, with the NV group presenting more cells than the IrV group. The leukocyte increase to 13,000/ml indicates that slight leukocytosis occurred in the week after the first inoculation in the NV group. There was no statistically significant difference between groups in the absolute count of segmented neutrophils, eosinophils, and lymphocytes but there were statistically significant oscillations in values at the different collecting times. The NV group presented an increase in the absolute neutrophil count after the first inoculation that persisted for 5 weeks. In the IrV group, the increase in neutrophils occurred only in the first week returning to normal in the following weeks. The alterations in the neutrophil count are indicative of systemic inflammatory response related to cytokine release; response was more marked in the NV group, showing its greater toxicity.
Resumo:
Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A(2) homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA(2)s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA(2) activity of BthTX-II and, still less, the PLA(2) and edema-inducing activities of the acidic isoform BthA-1-PLA(2), from the same venom, showing therefore a higher inhibitory activity upon basic PLA(2)s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA(2)s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA(2)s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA(2). A possible model for the interaction of rosmarinic acid with Lys49-PLA(2) BthTX-I is proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Phospholipases A(2) (PLA(2)s) are commonly found in snake venoms from Viperidae, Hydrophidae and Elaphidae families and have been extensively studied due to their pharmacological and physiopathological effects in living organisms. This article reports a review on natural and artificial inhibitors of enzymatic, toxic and pharmacological effects induced by snake venom PLA(2)s. These inhibitors act on PLA(2)S through different mechanisms, most of them still not completely understood, including binding to specific domains, denaturation, modification of specific amino acid residues and others. Several substances have been evaluated regarding their effects against snake venoms and isolated toxins, including plant extracts and compounds from marine animals, mammals and snakes serum plasma, in addition to poly or monoclonal antibodies and several synthetic molecules. Research involving these inhibitors may be useful to understand the mechanism of action of PLA(2)s and their role in envenomations caused by snake bite. Furthermore, the biotechnological potential of PLA(2) inhibitors may provide therapeutic molecular models with antiophidian activity to supplement the conventional serum therapy against these multifunctional enzymes.
Resumo:
This work evaluated the clinical and therapeutic aspects as well as serum levels of venom and antivenom IgG by enzyme-linked immunosorbent assay (ELISA) in experimental envenomation of dogs with Crotalus durissus terrificus venom. Twenty-eight mixed breed adult dogs were divided into four groups of seven animals each, Group I: only venom; Group II, venom + 50 ml of anti-bothropic-crotalic serum (50mg) + fluid therapy; Group III, venom + 50 ml of anti-bothropic-crotalic serum + fluid therapy + urine alkalination; Group IV, 50 ml of anti-bothropic-crotalic serum. The lyophilized venom of Crotalus durissus terrificus was reconstituted in saline solution and subcutaneously inoculated at the dose of 1mg/kg body weight. The dogs presented clinical signs of local pain, weakness, mandibular ptosis, mydriasis, emesis and salivation. The venom levels detected by ELISA ranged from 0 to 90ng/ml, according to the severity of the clinical signs. Serum antivenom ranged from 0 to 3ug/ml and was detected for up to 138h after treatment. ELISA results showed the effectiveness of the serum therapy for the venom neutralization.
Resumo:
The insects of the order Hymenoptera ( bees, wasps, and ants) are classified in two groups, based on their life history: social and solitary. The venoms of the social Hymenoptera evolved to be used as defensive tools to protect the colonies of these insects from the attacks of predators. Generally they do not cause lethal effects but cause mainly inflammatory and/or immunological reactions in the victims of their stings. However, sometimes it is also possible to observe the occurrence of systemic effects like respiratory and/or kidney failure. Meanwhile, the venoms of solitary Hymenoptera evolved mainly to cause paralysis of the preys in order to permit egg laying on/within the prey's body; thus, some components of these venoms cause permanent/transient paralysis in the preys, while other components seem to act preventing infections of the food and future progenies. The peptide components of venoms from Hymenoptera are spread over the molar mass range of 1400 to 7000 da and together comprise up to 70% of the weight of freeze-dried venoms. Most of these toxins are linear polycationic amphipatic peptides with a high content of alpha-helices in their secondary structures. These peptides generally account for cell lysis, hemolysis, antibiosis, and sometimes promote the delivery of cellular activators/mediators through interaction with the G-protein receptor, and perhaps some of them are even immunogenic components. In addition to these peptides, the Hymenopteran venoms also may contain a few neurotoxins that target Na+ and/or Ca+2 channels or even the nicotinic ACh receptor. This review summarizes current knowledge of the biologically active Hymenoptera venoms.
Resumo:
Mario Sergio Palma, Yasuhiro Itagaki, Tsuyoshi Fujita, Hideo Naoki and Terumi Nakajima. Structural characterization of a new acylpolpaminetoxin from the venom of Brazilian garden spider Nephilengys: cruentata. Toxicon 36, 455-493, 1998.-The use of mass spectrometry, in which high-energy CID and charge remote fragmentation both of protonated and sodium-attached molecular ions was applied, afforded the structural elucidation of a new acylgolyaminetoxin with M-W= 801 da from the venom of the Brazilian garden spider Nephilengys cruentata. In spite of having the same M-W of the NPTX-2, previously described in the venom of the Joro spider Nephila clavata, neither toxins are isomers. In order to differentiate them by using the most usual nomenclature, the new toxin was named NPTX-801C and the NPTX-2 was renamed to NPTX-801E. Both toxins have as common structure the 4-hydroxyindole-3-acetyl-asparaginyl-cadaveryl moiety in their molecules and their structure may be represented in a simplified way: NPTX-801E is HO-indole-Asn-Cad-Pta-Orn-Arg and NPTX-801C is HO-indole-Asn-Cad-Gly-Put-Pta-Pta. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A new, highly active tetrahydro-p-carboline toxin from the spider Parawixia bistriata, the most-common species of social spider occurring in Brazil, was isolated. The new toxin was identified as 1,2,3,4-tetrahydro-6-hydroxy-beta-carboline (= N-[3-(2,3,4,9-tetrahydro-6-hydroxy-1H-pyrido[3,4-b]indol-1-yl)propyl]guanidine; 3). This type of alkaloid, not common among spider toxins, was found to be the most-potent constituent of the spider's chemical weaponry to kill prey. When P bistriata catch arthropods in their web, they apparently attack their prey in groups of many individuals injecting their venoms. In vivo toxicity assays with 3 demonstrated a potent lethal effect to honeybees, giving rise to clear neurotoxic effects (paralysis) before death. The compound's toxicity (LD50 value) was determined to be ca. 8 ng/g of honeybee. The investigation of the pharmacological properties and neurotoxic actions of 3 may be used in the future for the development of new drugs to be applied for pest control in agriculture.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Orb-web-spiders present a series of different strategies for prey capture, involving the use of different types of silk for web building, the use of adhesive traps in the webs, the secretion of toxic compounds to the spider's preys in the adhesive coating of the capture web and the biosynthesis of a wide range of structurally related acylpolyamine toxins in their venoms. The polyamine toxins usually block neuromuscular junctions and/or the central nervous system (CNS) of Arthropods, targeting specially the ionotropic glutamate receptors; this way these toxins are used are as chemical weapons to kill / paralyze the spider's prey. Polyamine toxins contain many azamethylene groups involved with the chelation of metal ions, which in turn can interact with the glutamate receptors, affecting the toxicity of these toxins. It was demonstrated that the chelation of Ni+2, Fe+2, Pb+2, Ca+2 and Mg+2 ions by the desalted crude venom of Nephilengys cruentata and by the synthetic toxin JSTX-3, did not cause any significant change in the toxicity of the acylpolyamine toxins to the model-prey insect (honeybees). However, it was also reported that the chelation of Zn+2 ions by the acylpolyamines potentiated the lethal / paralytic action of these toxins to the honeybees, while the chelation of Cu+2 ions caused the inverse effect. Atomic absorption spectrometry and Plasma-ICP analysis both of N.cruentata venom and honeybee's hemolymph revealed that the spider's venom concentrates Zn+2 ions, while the honeybee's hemolymph concentrates Cu+2 ions. These results are suggesting that the natural accumulation of Zn+2 ions in N. cruentata venom favors the prey catching and/or its maintenance in the web, while the natural accumulation of Cu+2 ions in prey's hemolymph minimizes the efficiency of the acylpolyamine toxins as killing/paralyzing tool.
Resumo:
Snake venom (sv) C-type lectins encompass a group of hemorrhagic toxins that are capable of interfering with blood stasis. A very well-studied svC-type lectin is the heterodimeric toxin, convulxin (CVX), from the venom of South American rattlesnake Crotalus durissus terrificus. CVX is able to activate platelets and induce their aggregation by acting via p62/GPVI collagen receptor. By using polymerase chain reaction homology screening, we have cloned several cDNA precursors of CVX subunit homologs. One of them, named crotacetin (CTC) beta-subunit, predicts a polypeptide with a topology very similar to the tridimensional conformations of other subunits of CVX-like snake toxins, as determined by computational analysis. Using gel permeation and reverse-phase high-performance liquid chromatography, CTC was purified from C. durissus venoms. CTC can be isolated from the venom of several C. durissus subspecies, but its quantitative predominance is in the venom of C. durissus cascavella. Functional analysis indicates that CTC induces platelet aggregation, and, importantly, exhibits an antimicrobial activity against Gram-positive and -negative bacteria, comparable with CVX.
Resumo:
BaP1 is a 22.7-kD P-I-type zinc-dependent metalloproteinase isolated from the venom of the snake Bothrops asper, a medically relevant species in Central America. This enzyme exerts multiple tissue-damaging activities, including hemorrhage, myonecrosis, dermonecrosis, blistering, and edema. BaP1 is a single chain of 202 amino acids that shows highest sequence identity with metalloproteinases isolated front the venoms of snakes of the subfamily Crotalinae. It has six Cys residues involved in three disulfide bridges (Cys 117-Cys 197, Cys 159-Cys 181, Cys 157-Cys 164). It has the consensus sequence H(142)E(143)XXH(146)XXGXXH(152), as well as the sequence C164I165M166, which characterize the metzincin superfamily of metalloproteinases. The active-site cleft separates a major subdomain (residues 1-152), comprising four a-helices and a five-stranded beta-sheet, from the minor subdomain, which is formed by a single a-helix and several loops. The catalytic zinc ion is coordinated by the N-epsilon2 nitrogen atoms of His 142, His 146, and His 152, in addition to a solvent water molecule, which in turn is bound to Glu 143. Several conserved residues contribute to the formation of the hydrophobic pocket, and Met 166 serves as a hydrophobic base for the active-site groups. Sequence and structural comparisons of hemorrhagic and nonhemorrhagic P-I metalloproteinases from snake venoms revealed differences in several regions. In particular, the loop comprising residues 153 to 176 has marked structural differences between metalloproteinases with very different hemorrhagic activities. Because this region lies in close proximity to the active-site microenvironment, it may influence the interaction of these enzymes with physiologically relevant substrates in the extracellular matrix.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work aimed to evaluate the clinical and hematological aspects during experimental envenomation by Crotalus durissus terrificus in dogs treated with different antiophidic serum doses. Sixteen dogs were divided into two groups of eight animals each. Group I received 1mg/kg venom subcutaneously and 30mg antiophidic serum intravenously; Group II received 1mg/kg venom subcutaneously and 60mg antiophidic serum intravenously. In the clinical evaluation, we observed ataxia, moderate sedation, dilated pupils, sialorrhea, flaccid paralysis of mandibular muscles, and discreet edema at the site of venom inoculation. Evaluating red and white blood cells, we observed a decrease of hemoglobins, globular volume and erythrocytes, and an increase of plasmatic proteins, leukocytes, neutrophils, monocytes and lymphocytes. Clotting time increased and there was blood incoagulability with return to normal clotting time six hours after antiophidic serum administration. Animals treated with six antiophidic serum flasks had a faster recovery than the animals that received three serum flasks.