960 resultados para voice activity detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Developmental Origins of Health and Disease Hypothesis proposes that adverse health outcomes in adult life are in part programmed during fetal life and infancy. This means that e.g. restricted nutrition during pregnancy programmes the offspring to store fat more effectively, to develop faster and to reach puberty earlier. These adaptations are beneficial in terms of short term survival. However, in developed countries these adaptations often lead to an increased risk of obesity and metabolic disturbances in later life, due to a mismatch between the prenatal and postnatal environment. This thesis aimed to study the role of early growth in people who are obese as adults, but metabolically healthy as well as in those who are normal in weight but metabolically obese. Other study aims were to assess whether physical activity and cardiorespiratory fitness are programmed early in life. The role of socioeconomic status in the development of obesity from a life course setting was also studied. These studies included 2003 men and women born in Helsinki between 1934 and 1944 with detailed information of their prenatal and childhood growth as well as living conditions. They participated in the detailed clinical examination during the years 2001-2004. A sub-group of the subjects participated in the UKK Institute 2-kilometre walk test. Metabolic syndrome was defined according to the 2005 criteria of the International Diabetes Federation. Among the obese men and women 20 % were metabolically healthy. Those with metabolic syndrome did not differ in birth size compared to the healthy ones, but by two years of age, they were lighter and thinner, and remained so up to 11 years. The period when changes in BMIs were predictive of the metabolic syndrome was from birth to 7 years. Of the normal weight individuals 17 % were metabolically obese. Again, there were no differences in birth size. However, by the age 7 years, those men who later developed metabolic syndrome were thinner. Gains in BMI during the first two years of life were protective of the syndrome. Children who were heavier, and especially taller, were more physically active, exercised with higher intensity and had higher cardiorespiratory fitness in their adult life than those who were shorter and thinner as children. Lower educational attainment and lower adult social class were associated with obesity in both men and women. Childhood social class was inversely associated with body mass index only in men while lower household income was associated with higher BMI in women. These results support the role of early life factors in the development of metabolic syndrome and adult life style. Early detection of risk factors predisposing to these conditions is highly relevant from a public health point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirteen terrestrial psychrotrophic bacteria from Antarctica were screened for the presence of a thermolabile ribonuclease (RNAase-HL). The enzyme was detected in three isolates of Pseudomonas fluorescens and one isolate of Pseudomonas syringae. It was purified from one P. Fluorescens isolate and the molecular mass of the enzyme as determined by SDS-PAGE was 16 kDa. RNAase-HL exhibited optimum activity around 40 degrees C at pH 7.4. It could hydrolyse Escherichia coli RNA and the synthetic substrates poly(A), poly(C), poly(U) and poly(A-U). Unlike the crude RNAase from mesophilic P. Fluorescens and pure bovine pancreatic RNAase A which were active even at 65 degrees C, RNAase-HL was totally and irreversibly inactivated at 65 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduced graphene oxide-lead dioxide composite is formed when EGO coated surface is electrochemically reduced along with lead ions in the solution. This composite has been shown to be an excellent material for low level detection of arsenic. Various functional groups present on EGO, in a wide pH range of 2-11, are responsible for the favorable interaction between metal ion and the modified electrode surface and subsequent trace level detection. X-ray photoelectron spectroscopy and Raman spectroscopic techniques confirm the formation of composite and its composition. Thin layer of lead dioxide along with reduced exfoliated graphene oxide has been shown to be responsible for the enhanced activity of the surface. The detection limit of arsenic is found to be 10 nM. This study opens up the possibility of using the composites for sensing applications and possibly simultaneous detection of arsenic and lead. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multilayers of poly(diallyldimethylammonium chloride) (PDDA) and citrate capped Au nanoparticles (AuNPs) anchored on sodium 3-mercapto-1-propanesulfonate modified gold electrode by electrostatic layer-by-layer assembly (LbL) technique are shown to be an excellent architecture for the direct electrochemical oxidation of As(III) species. The growth of successive layers in the proposed LbL architecture is followed by atomic force microscopy, UV-vis spectroscopy, quartz crystal microbalance with energy dissipation, and electrochemistry. The first bilayer is found to show rather different physico-chemical characteristics as compared to the subsequent bilayers, and this is attributed to the difference in the adsorption environments. The analytical utility of the architecture with five bilayers is exploited for arsenic sensing via the direct electrocatalytic oxidation of As(III), and the detection limit is found to be well below the WHO guidelines of 10 ppb. When the non-redox active PDDA is replaced by the redoxactive Os(2,2'-bipyridine)(2)Cl-poly(4-vinylpyridine) polyelectrolyte (PVPOs) in the LbL assembly, the performance is found to be inferior, demonstrating that the redox activity of the polyelectrolyte is futile as far as the direct electro-oxidation of As(III) is concerned. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an automatic acoustic-phonetic method for estimating voice-onset time of stops. This method requires neither transcription of the utterance nor training of a classifier. It makes use of the plosion index for the automatic detection of burst onsets of stops. Having detected the burst onset, the onset of the voicing following the burst is detected using the epochal information and a temporal measure named the maximum weighted inner product. For validation, several experiments are carried out on the entire TIMIT database and two of the CMU Arctic corpora. The performance of the proposed method compares well with three state-of-the-art techniques. (C) 2014 Acoustical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xanthine oxidase (XOD) extracted from bovine milk was immobilized covalently via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto cadmium oxide nanoparticles (CdO)/carboxylated multiwalled carbon nanotube (c-MWCNT) composite film electrodeposited on the surface of an Au electrode. The nanocomposite modified Au electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. Under optimal operation conditions (25 degrees C, + 0.2 V vs. Ag/AgCl, sodium phosphate buffer, pH 7.5), the following characteristics are attributed to the biosensor: linearity of response up to xanthine concentrations of 120 mu M, detection limit of 0.05 mu M (S/N = 3) and a response time of at most 4 s. After being used 100 times over a period of 120 days, only 50% loss of the initial activity of the biosensor was evaluated when stored at 4 degrees C. The fabricated biosensor was successfully employed for the determination of xanthine in fish meat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A MoS2-RGO composite and borocarbonitride (BC5N) have been used as electrodes to selectively detect dopamine and uric acid in the presence of ascorbic acid. Both the electrodes show excellent eletrocatalytic activity towards the detection of dopamine, the detection limits being 0.55 mu M and 2.1 mu M in the case of MoS2-RGO and BCN respectively. MoS2-RGO shows a linear range of current over the 1-110 mu M concentrations of dopamine, while BCN shows over the 2.3-20 mu M range. BCN also exhibits satisfactory performance in the oxidation of uric acid with a detection limit of 3.8 mu M and the linear range from 4 to 40 mu M. The MoS2-RGO has also been used to detect adenine as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current day networks use Proactive networks for adaption to the dynamic scenarios. The use of cognition technique based on the Observe, Orient, Decide and Act loop (OODA) is proposed to construct proactive networks. The network performance degradation in knowledge acquisition and malicious node presence is a problem that exists. The use of continuous time dynamic neural network is considered to achieve cognition. The variance in service rates of user nodes is used to detect malicious activity in heterogeneous networks. The improved malicious node detection rates are proved through the experimental results presented in this paper. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speech polarity detection is a crucial first step in many speech processing techniques. In this paper, an algorithm is proposed that improvises the existing technique using the skewness of the voice source (VS) signal. Here, the integrated linear prediction residual (ILPR) is used as the VS estimate, which is obtained using linear prediction on long-term frames of the low-pass filtered speech signal. This excludes the unvoiced regions from analysis and also reduces the computation. Further, a modified skewness measure is proposed for decision, which also considers the magnitude of the skewness of the ILPR along with its sign. With the detection error rate (DER) as the performance metric, the algorithm is tested on 8 large databases and its performance (DER=0.20%) is found to be comparable to that of the best technique (DER=0.06%) on both clean and noisy speech. Further, the proposed method is found to be ten times faster than the best technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.

First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.

Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.

For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.

With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.

As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An indirect inhibitive surface plasmon resonance (SPR) immunoassay was developed for the microcystins (MCs) detection. The bioconjugate of MC-LR and bovine serum albumin (BSA) was immobilized on a CM5 sensor chip. A serial premixture of MC-LR standards (or samples) and monoclonal antibody (mAb) were injected over the functional sensor surface, and the subsequent specific immunoreaction was monitored on the BIAcore 3000 biosensor and generated a signal with an increasing intensity in response to the decreasing MCs concentration. The developed SPR immunoassay has a wide quantitative range in 1-100 mu g L-1. Although not as sensitive as conventional enzyme-linked immunosorbent assay (ELISA), the SPR biosensor offered unique advantages: (I) the sensor chip could be reusable without any significant loss in its binding activity after 50 assay-regeneration cycles, (2) one single assay could be accomplished in 50 min (including 30-min preincubation and 20-min BIAcore analysis), and (3) this method did not require multiple steps. The SPR biosensor was also used to detect MCs in environmental samples, and the results compared well with those obtained by ELISA. We conclude that the SPR biosensor offers outstanding advantages for the MCs detection and may be further developed as a field-portable sensor for real-time monitoring of MCs on site in the near future. (C) 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defensins are a group of cationic antimicrobial peptides which play an important role in the innate immune system by exerting their antimicrobial activity against pathogens. In this study, we cloned a novel beta-defensin cDNA from medaka (Oryzias latipes) by rapid amplification of cDNA ends (RACE) technique. The full-length cDNA consists of 480 bp, and the open reading frame (CRF) of 189 bp encodes a polypeptide of 63 amino acids (aa) with a predicted molecular weight of 7.44 kDa. Its genomic organization was analyzed, and Southern blot detection confirmed that only one copy of beta-defensin exists in the medaka HNI strain. RT-PCR, Western blot and immunohistochemistry detections showed that the beta-defensin transcript and protein could be detected in eyes, liver, kidney, blood, spleen and gill, and obviously prevalent expression was found in eyes. Antimicrobial activity of the medaka beta-defensin was evaluated, and the antibacterial activity-specific to Gram-negative bacteria was revealed. Furthermore, the lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, was demonstrated to be able to induce about 13-fol up-regulation of the beta-defensin within first 12 h. In addition, promoter and promoter mutagenesis analysis were performed in the medaka beta-defensin. A proximal 100 base pair(bp) sequence (+26 to -73)and the next 1700 bp sequence (-73 to -1755) were demonstrated to be responsible for the basal promoter activity and for the transcription regulation. Three nuclear factor kappa B (NF-kappa B) cis-elements and a Sp1 cis-element were revealed by mutagenesis analysis to exist in the 5' flanking sequence, and they were confirmed to be responsible for the up-regulation of medaka beta-defensin stimulated by LPS. And, the Sp1 cis-element was further revealed to be related to the basal promoter activity, and transcriptional factor II D (TFIID) was found to be in charge of the gene transcription initiation. All the obtained data suggested that the novel medaka beta-defensin should have antimicrobial activity-specific to Gram-negative bacteria, and the antibacterial immune function should be modulated by NF-kappa B and Sp1. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate polychlorinated biphenyls (PCBs) contamination in tilapia (Oreochromis mossambicus) collected from the Manna stream and Ala Wai Canal of O'ahu, an island of the geographically isolated Hawaiian archipelago. Our results show that the average concentrations of PCBs varied from 51.90 to 89.42 ng g(-1) lipid weight for the sampling sites. Relative toxic potencies (RTPs) and toxic equivalencies (TEQs) were determined to be 20.38-40.60 ng TCDD g(-1) lipid weight and 2.89-4.17 ng TEQ g(-1) lipid weight by 7-ethoxy-resorufin-O-deethylase (EROD) activity analysis and calculation of PCB concentrations based on toxic equivalency factors (TEFs), respectively. Penta-chlorinated congeners were found to be predominant, which revealed that Aroclor 1254 was a possible major source of PCBs in our fish samples. PCB 118, an indicator PCBs, constituted more than 55% and 30% of the total PCBs and TEQs, respectively. In addition, PCB 118 was found to have a linear correlation to the total PCBs (R = 0.975) and TEQs (R = 0.782). Detection of concentrated PCBs in Hawaiian waters suggests a potentially adverse impact of this pollutant on human health, as well as ecological systems, and suggests the necessity of environmental monitoring and hazard assessment of PCBs within the Hawaiian Islands. (c) 2008 Published by Elsevier Ltd.