977 resultados para ultrasonic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general and facile ultrasonic irradiation method has been established for the synthesis of the lanthanide orthovanadate LnVO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) nanoparticles from an aqueous solution of Ln(NO3)(3) and NH4VO3 without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the as-prepared products. Ultrasonic irradiation has a strong effect on the morphology of the LnVO(4) nanoparticles. The SEM and TEEM images illustrate that the as-formed LnVO(4) particles have a spindle-like shape with an equatorial diameter of 30-70 nm and a length of 100-200 am, which are the aggregates of even.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bilayer CdS/ITO film was obtained. The dipped CdS was grown by an ultrasonic colloid deposition (USCD) method. Microstructure of the CdS film made by USCD has a wider transmission range and a higher transmittance. Amorphous indium-tin-oxide (ITO) thin film was deposited using d.c. magnetron-sputtering at room temperature. The ITO films exhibited good conductivity and maximum transmittance of 94%. The CdS/ITO bilayer was investigated by means of GIXD (grazing incidence X-ray diffraction) at different incidence angles (alpha = 0.20-5.00degrees) and XRD. We discuss a model for the thin bilayer film. SEM and AFM show that homogeneous CdS films with a bar-shaped ultrafine particles and ITO film with nanometer structure. The mechanism of the bilayer CdS/ITO film is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption coefficients for ethylamine in heavy water (D2O) and in light water (H2O) have been measured in the frequency range from 0.8 to 220 MHz at 25 degrees C. A single relaxational process has been observed in these two kinds of solutions. From the concentration dependence of the ultrasonic relaxation parameters, and following the reaction mechanism proposed by Eigen et al. for ethylamine in H2O, the causes of the relaxations have been attributed to a perturbation of an equilibrium associated with a deuteron or proton transfer reaction. The rate and equilibrium constants have been estimated from deuterioxide or hydroxide ion concentration dependence of the relaxation frequency, and the kinetic isotope effects have been determined. In addition, the standard volume changes of the reactions have been calculated from the concentration dependence of the maximum absorption per wavelength, and the adiabatic compressibility has also been determined from the density and sound velocity for ethylamine in D2O and in H2O, respectively. These results are compared with those for propylamine and butylamine and are discussed in relation to the different kinetic properties between D2O and H2O, the reaction radii derived by Debye theory, and the structural properties of the reaction intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption coefficients were measured for butylamine in heavy water (D2O) in the frequency range from 0.8 to 220 MHz and at concentrations from 0.0278 to 2.5170 mol dm(-3) at 25 degrees C; two kinds of relaxation processes were observed. One was found in relatively dilute solutions (up to 0.5 mol dm(-3)), which was attributed to the hydrolysis of butylamine. In order to compare the results, absorption measurements were also carried out in light water (H2O). The rate and thermodynamic parameters were determined from the concentration dependence of the relaxation frequency and the maximum absorption per wavelength. The isotope effects on the diffusion-controlled reaction were estimated and the stability of the intermediate of the hydrolysis was considered while comparing it with the results for propylamine in H2O and D2O. Another relaxation process was observed at concentrations greater than 1 mol dm(-3) in D2O. In order to examine the solution characteristics, proton NMR measurements for butylamine were also carried out in D2O. The chemical shifts for the gamma- and delta-proton in butylamine molecule indicate the existence of an aggregate. From profiles of the concentration dependence of the relaxation frequency and the maximum absorption per wavelength of sound absorption, the source of the relaxation was attributed to an association-dissociation reaction, perhaps, associated with a hydrophobic interaction. The aggregation number, the forward and reverse rate constants and the standard volume change of the reaction were determined. It was concluded from a comparison with the results in H2O that the hydrophobic interaction of butylamine in D2O is stronger than that in H2O. Also, the isotope effect on this reaction was interpreted in terms of the solvent structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propylamine has been selected to investigate the isotope effect of a fast deuteron transfer reaction by ultrasonic relaxation method. Ultrasonic absorption coefficients of propylamine in heavy water (D2O) at 25 degrees C in the concentration range from 0.0107 to 0.6300 mol dm(-3) have been measured by pulse and resonance methods over the frequency range from 0.8 to 220 MHz. A Debye-type single relaxation absorption has been observed in the solution. From the dependence of the ultrasonic relaxation parameters on the concentration and solution pH, the source of the observed relaxation has been attributed to a perturbation of the chemical equilibrium associated with the deuteron transfer reaction. The rate and equilibrium constants have been determined by the measurement of the deuteroxyl ion concentration dependence of the relaxation frequency. Also the standard volume change of the reaction has been determined from the concentration dependence of the maximum absorption per wavelength and the adiabatic compressibility has been calculated from the density and the sound velocity in the solution. These results have then been compared with those obtained for propylamine in light water (H2O). The forward rate constant is greater and the reverse rate constant is smaller in DO than in H2O. The standard volume change for deuteron transfer is greater than that for proton transfer reaction, and the adiabatic compressibility shows a similar trend. These data support an argument that there exists a stronger hydrogen bond in D2O than in H2O. The difference of the stability in the intermediate states, R-ND3+... OD- and R-NH3+... OH-, has also been considered from the results of the isotope effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sol-gel process has been developed for the synthesis of amorphous silica-aluminas with controlled mesopore distribution without the use of organic templating agents, e.g., surfactant molecules. Ultrasonic treatment during the synthesis enables production of precursor sols with narrow particle size distribution. Atomic force microscopy analysis shows that these sol particles are spherical in shape with a narrow size distribution (i.e., 13-25 nm) and their aggregation during the gelation creates clusters containing similar sized interparticle mesopores. A nitrogen physiadsorption study indicates that the mesoporous materials containing different Si/Al ratios prepared by the new synthesis method has a large specific surface area (i.e., 587-692 m(2)/g) and similar pore sizes of 2-11 nm. Solid-state Al-27 magic angle spinning (MAS) NMR shows that most of the aluminum is located in the tetrahedral position. A transmission electron microscopy (TEM) image shows that the mesoporous silica-alumina consists of 12-25 nm spheres. Additionally, high-resolution TEM and electron diffraction indicate that some nanoparticles are characteristic of a crystal, although X-ray diffraction and Si-29 MAS NMR analysis show an amorphous material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+), but not paternal (m+/p-), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns the use of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste and specifically, the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of paste materials at the molecular level. Ultrasonic techniques are a widely used and a reliable form of non-destructive testing of materials. This is because techniques such as ultrasounds while used for testing or monitoring material properties, has offered immense benefits in applications where access to the sample is restricted or when handling the sample for testing could interfere with the monitoring or analysis process. Very often, this would mean that the measurements taken are not a true representation of the behaviour of the material (due to externally incorporated changes into the material's physical state during the removal or testing process). Ultrasonic based techniques are being increasingly used for quality control and production monitoring functions which requires evaluation of the changes in material properties over wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough, and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capacity to take rapid measurements in systems which are optically opaque. The viscometer and rheometer are two of the most widely used rheological instruments used in industry for monitoring the quality of solder pastes, during the production and packaging stage. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. It is for these reasons that materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers) are keen to see the development of simple, easy to use and accurate techniques for the theological characterisation of solder pastes. The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the application of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste through the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of lead-free solder paste containing different types of flux. Ultrasonic techniques offer a robust and reliable form of non-destructive testing of materials where access to the sample is restricted or when sample handling can interfere with the monitoring or analysis process due to externally incorporated changes to the material’s physical state or accidental contamination during the removal or testing process. Ultrasonic based techniques are increasingly used for quality control and production monitoring functions which requires evaluation of changes in material properties for a wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capability to take rapid measurements in systems which are optically opaque. The conventional industry approach for characterising the rheological properties of suspensions during processing/packaging stage is mainly through the use of viscometer and some through the use of rheometer. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. The ultrasound technique being proposed provides simple, yet accurate and easy to use solution for the in-situ rheological characterisation of solder pastes which will benefit the materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers). The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.