984 resultados para theoretical physics
Resumo:
The lattice dynamics method is used to study the stability of the chain structures formed in electrorheological (ER) fluids. The appearance of the soft modes in the phonon dispersion of the structures indicates that the chains tend to distort and aggregate into thicker columns due to the electrostatic attractive forces and thermal generated forces between them. The results show that the stability of the chains relies on their width and the separation between them. The complete chain structures are more stable than the chains with defects. The results can be used to elucidate the densification phenomenon of the chains in the structuring process of ER fluids in the quiescent state.
Resumo:
Recent work, has produced a wealth of data concerning the chemical evolution of the Galactic bulge, both for stars and nebulae. Present theoretical models generally adopt it limited range of such constraints, frequenfly using it single chemical element (usually iron), which is not enough to describe it unambiguously. In this work, we take into account contraints involving,9 Many chemical elements as possible, basically obtained from bulge nebulae and stars. Our main goal is to show that different scenarios can describe, at least partially the abundance distribution and several dishuice-independent correlations for these objects . Three classes of models were developed. The first is it one-zone, single-infall model, the. Second is it one-zone, double-infall model and the third is a multizone, double-infall model. We show that a one-zone model with it single infall episode is able to reproduce some of the observational data, but the best results tire achieved using it multizone, double-infall model.
Resumo:
The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.
Resumo:
In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH#3 of the IEA-R1 reactor at the Instituto de Pesquisas Energeticas e Nucleares (Brazil) without necessity of interrupting the reactor operation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We provide necessary and sufficient conditions for states to have an arbitrarily small uncertainty product of the azimuthal angle phi and its canonical moment L(z). We illustrate our results with analytical examples.
Resumo:
The aim of this work was to investigate the role played by an external field on the Casimir energy density for massive fermions under S-1 x R-3 topology. Both twisted- and untwisted-spin connections are considered and the calculation in a closed form is performed using an alternative approach based on the combination of the analytic regularization method and the Euler-Maclaurin summation formula. It is shown that no mass scale appears in the final result and, therefore, Casimir effect arises only from the boundary conditions and vacuum fluctuations induced by the coupling with the external field.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Using conformal coordinates associated with conformal relativity-associated with de Sitter spacetime homeomorphic projection into Minkowski spacetime-we obtain a conformal Klein-Gordon partial differential equation, which is intimately related to the production of quasi-normal modes (QNMs) oscillations, in the context of electromagnetic and/or gravitational perturbations around, e.g., black holes. While QNMs arise as the solution of a wave-like equation with a Poschl-Teller potential, here we deduce and analytically solve a conformal 'radial' d'Alembert-like equation, from which we derive QNMs formal solutions, in a proposed alternative to more completely describe QNMs. As a by-product we show that this 'radial' equation can be identified with a Schrodinger-like equation in which the potential is exactly the second Poschl-Teller potential, and it can shed some new light on the investigations concerning QNMs.
Resumo:
Feynman integrals in the physical light-cone gauge are more difficult to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices - prescriptions - some successful and others not. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative, third approach, which for practical computations could dispense with prescriptions as well as avoiding the necessity of careful stepwise consideration of causality, would be of great advantage. and this third option is realizable within the context of negative dimensions, or as it has been coined, the negative dimensional integration method (NDIM).
Resumo:
A study of the reducibility of the Fock space representation of the q-deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is carried out by using the properties of the Gauss polynomials. When the deformation parameter is a root of unity, an interesting result comes out in the form of a reducibility scheme for the space representation which is based on the classification of the primitive or nonprimitive character of the deformation parameter. An application is carried out for a q-deformed harmonic oscillator Hamiltonian, to which the reducibility scheme is explicitly applied.
Resumo:
Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.
Resumo:
Massive particles of spin 0 and 1 violate the equivalence principle (EP) at the tree level. on the other hand, if these particles are massless, they agree with the EP, which leads us to conjecture that from a semiclassical viewpoint massless particles, no matter what their spin, obey the EP. General relativity predicts a deflection angle of 2.63' for a nonrelativistic spinless massive boson passing close to the Sun, while for a massive vectorial boson of spin 1 the corresponding deflection is 2.62'.
Resumo:
The scattering of photons by a static gravitational field, treated as an external field, is discussed in the context of gravity with higher derivatives. It is shown that the R-2 sector of the theory does not contribute to the photon scattering, whereas the R-mu nu(2) sector produces dispersive (energy-dependent) photon propagation.