966 resultados para technical information management
Resumo:
Työn tavoitteena oli selvittää UPM-Kymmene Oyj Kaukaan tehtaalla käytettävän teknisen tiedon tietovarastoja, tiedon määrää ja laatua. Lisäksi työssä selvitetään tiedon kasvuvauhtia lähivuosina sekä sen dokumentointia ja dokumentoinnin kehitystä. Työssä keskityttiin tekniseen tietoon, mitä käyttää pääsääntöisesti kunnossapito, suunnittelu ja materiaalihallinto. Työn johdosta havaittiin, että tehtaalla käytetään huomattavia määriä henkilöstöresursseja tiedon etsimiseen ja sen päivittämiseen. Lisäksi huomattiin tehtaan teknisessä tiedossa olevan selkeitä päällekkäisyyksiä tiedon tallentamisen osalta, mikä aiheuttaa epävarmuutta tiedon validiutta arvioitaessa. Toimenpiteiksi ehdotettiin tietovarastojen systemaattista läpikäymistä siten, että tiedot luokiteltaisiin luotavalla asteikolla tärkeisiin ja vähemmän tärkeisiin kokonaisuuksiin. Kriteerinä voisi toimia esimerkiksi kriittisyys tuotantoon nähden.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 52.
Resumo:
A great deal of attention in the supply chain management literature is devoted to study material and demand information flows and their coordination. But in many situations, supply chains may convey information from different nature, they may be an important channel companies have to deliver knowledge, or specifically, technical information to the market. This paper studies the technical flow and highlights its particular requirements. Drawing upon a qualitative field research, it studies pharmaceutical companies, since those companies face a very specific challenge: consumers do not have discretion over their choices, ethical drugs must be prescribed by physicians to be bought and used by final consumers. Technical information flow is rich, and must be redundant and early delivered at multiple points. Thus, apart from the regular material channel where products and order information flow, those companies build a specialized information channel, developed to communicate to those who need it to create demand. Conclusions can be extended to supply chains where products and services are complex and decision makers must be clearly informed about technology-related information. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dissertação para a obtenção de Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Thisthesis supplements the systematic approach to competitive intelligence and competitor analysis by introducing an information-processing perspective on management of the competitive environment and competitors therein. The cognitive questions connected to the intelligence process and also the means that organizational actors use in sharing information are discussed. The ultimate aim has been to deepen knowledge of the different intraorganizational processes that are used in acorporate organization to manage and exploit the vast amount of competitor information that is received from the environment. Competitor information and competitive knowledge management is examined as a process, where organizational actorsidentify and perceive the competitive environment by using cognitive simplification, make interpretations resulting in learning and finally utilize competitor information and competitive knowledge in their work processes. The sharing of competitive information and competitive knowledge is facilitated by intraorganizational networks that evolve as a means of developing a shared, organizational level knowledge structure and ensuring that the right information is in the right place at the right time. This thesis approaches competitor information and competitive knowledge management both theoretically and empirically. Based on the conceptual framework developed by theoretical elaboration, further understanding of the studied phenomena is sought by an empirical study. The empirical research was carried out in a multinationally operating forest industry company. This thesis makes some preliminary suggestions of improving the competitive intelligence process. It is concluded that managing competitor information and competitive knowledge is not simply a question of managing information flow or improving sophistication of competitor analysis, but the crucial question to be solved is rather, how to improve the cognitive capabilities connected to identifying and making interpretations of the competitive environment and how to increase learning. It is claimed that competitive intelligence can not be treated like an organizational function or assigned solely to a specialized intelligence unit.
Resumo:
With a Sales and Operations Planning (S&OP) process, a company aims to manage the demand and supply by planning and forecasting. The studied company uses an integrated S&OP process to improve the company's operations. The aim of this thesis is to develop this business process by finding the best possible way to manage the soft information in S&OP, whilst also understanding the importance and types (assumptions, risks and opportunities) of soft information in S&OP. The soft information in S&OP helps to refine future S&OP planning, taking into account the uncertainties that affect the balance of the long-term demand and supply (typically 12-18 months). The literature review was used to create a framework for soft information management process in S&OP. There were not found a concrete way how to manage soft information in the existing literature. In consequence of the poor literature available the Knowledge Management literature was used as the base for the framework creation, which was seen in the very same type of information management like the soft information management is. The framework created a four-stage process to manage soft information in S&OP that included also the required support systems. First phase is collecting and acquiring soft information in S&OP, which include also categorization. The categorization was the cornerstone to identify different requirements that needs to be taken into consideration when managing soft information in S&OP process. The next phase focus on storing data, which purpose is to ensure the soft information is managed in a common system (support system) in a way that the following phase makes it available to users in S&OP who need by help of sharing and applications process. The last phase target is to use the soft information to understand assumptions and thoughts of users behind the numbers in S&OP plans. With this soft management process the support system will have a key role. The support system, like S&OP tool, ensures that soft information is stored in the right places, kept up-to-date and relevancy. The soft information management process in S&OP strives to improve the relevant soft information documenting behind the S&OP plans into the S&OP support system. The process offers an opportunity to individuals to review, comment and evaluate soft information in S&OP made by their own or others. In the case company it was noticed that without a properly documented and distributed soft information in S&OP it was seen to cause mistrust towards the planning.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
This work involves the organization and content perspectives on Enterprise Content Management (ECM) framework. The case study at the Federal University of Rio Grande do Norte was based on ECM model to analyse the information management provided by the three main administrative systems: The Integrated Management of Academic Activities (SIGAA), Integrated System of Inheritance, and Contracts Administration (SIPAC) and the Integrated System for Administration and Human Resources (SIGRH). A case study protocol was designed to provide greater reliability to research process. Four propositions were examined in order to reach the specific objectives of identification and evaluation of ECM components from UFRN perspective. The preliminary phase provided the guidelines for the data collection. In total, 75 individuals were interviewed. Interviews with four managers directly involved on systems design were recorded (average duration of 90 minutes). The 70 remaining individuals were approached in random way in UFRN s units, including teachers, administrative-technical employees and students. The results showed the presence of many ECM elements in the management of UFRN administrative information. The technological component with higher presence was "management of web content / collaboration". But initiatives of other components (e.g. email and document management) were found and are in continuous improvement. The assessment made use of eQual 4.0 to examine the effectiveness of applications under three factors: usability, quality of information and offered service. In general, the quality offered by the systems was very good and walk side by side with the obtained benefits of ECM strategy adoption in the context of the whole institution
Resumo:
Abstract Background Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. Results This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. Conclusions This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.
Resumo:
The need to effectively manage the documentation covering the entire production process, from the concept phase right through to market realise, constitutes a key issue in the creation of a successful and highly competitive product. For almost forty years the most commonly used strategies to achieve this have followed Product Lifecycle Management (PLM) guidelines. Translated into information management systems at the end of the '90s, this methodology is now widely used by companies operating all over the world in many different sectors. PLM systems and editor programs are the two principal types of software applications used by companies for their process aotomation. Editor programs allow to store in documents the information related to the production chain, while the PLM system stores and shares this information so that it can be used within the company and made it available to partners. Different software tools, which capture and store documents and information automatically in the PLM system, have been developed in recent years. One of them is the ''DirectPLM'' application, which has been developed by the Italian company ''Focus PLM''. It is designed to ensure interoperability between many editors and the Aras Innovator PLM system. In this dissertation we present ''DirectPLM2'', a new version of the previous software application DirectPLM. It has been designed and developed as prototype during the internship by Focus PLM. Its new implementation separates the abstract logic of business from the real commands implementation, previously strongly dependent on Aras Innovator. Thanks to its new design, Focus PLM can easily develop different versions of DirectPLM2, each one devised for a specific PLM system. In fact, the company can focus the development effort only on a specific set of software components which provides specialized functions interacting with that particular PLM system. This allows shorter Time-To-Market and gives the company a significant competitive advantage.
Resumo:
Information management is a key aspect of successful construction projects. Having inaccurate measurements and conflicting data can lead to costly mistakes, and vague quantities can ruin estimates and schedules. Building information modeling (BIM) augments a 3D model with a wide variety of information, which reduces many sources of error and can detect conflicts before they occur. Because new technology is often more complex, it can be difficult to effectively integrate it with existing business practices. In this paper, we will answer two questions: How can BIM add value to construction projects? and What lessons can be learned from other companies that use BIM or other similar technology? Previous research focused on the technology as if it were simply a tool, observing problems that occurred while integrating new technology into existing practices. Our research instead looks at the flow of information through a company and its network, seeing all the actors as part of an ecosystem. Building upon this idea, we proposed the metaphor of an information supply chain to illustrate how BIM can add value to a construction project. This paper then concludes with two case studies. The first case study illustrates a failure in the flow of information that could have prevented by using BIM. The second case study profiles a leading design firm that has used BIM products for many years and shows the real benefits of using this program.
Resumo:
Aiming to address requirements concerning integration of services in the context of ?big data?, this paper presents an innovative approach that (i) ensures a flexible, adaptable and scalable information and computation infrastructure, and (ii) exploits the competences of stakeholders and information workers to meaningfully confront information management issues such as information characterization, classification and interpretation, thus incorporating the underlying collective intelligence. Our approach pays much attention to the issues of usability and ease-of-use, not requiring any particular programming expertise from the end users. We report on a series of technical issues concerning the desired flexibility of the proposed integration framework and we provide related recommendations to developers of such solutions. Evaluation results are also discussed.
Resumo:
This paper analyses the relationship between productive efficiency and online-social-networks (OSN) in Spanish telecommunications firms. A data-envelopment-analysis (DEA) is used and several indicators of business ?social Media? activities are incorporated. A super-efficiency analysis and bootstrapping techniques are performed to increase the model?s robustness and accuracy. Then, a logistic regression model is applied to characterise factors and drivers of good performance in OSN. Results reveal the company?s ability to absorb and utilise OSNs as a key factor in improving the productive efficiency. This paper presents a model for assessing the strategic performance of the presence and activity in OSN.