947 resultados para systemic functional grammar
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disease that results in inflammation and tissue damage. The etiology of SLE remains unknown, but recent studies have shown that the innate immune system may have a role in SLE pathogenesis through the secretion of small cationic peptides named defensins. The aim of the study was to determine the possible involvement in SLE of three functional single nucleotide polymorphisms (SNPs) (c.-52G>A, c.-44C>G and c.-20G>A) in the 5'UTR region of DEFB1 gene, by analyzing them in a population of 139 SLE patients and 288 healthy controls. The c.-52G>A SNP showed significant differences in allele and genotype frequency distribution between SLE patients and controls (p = 0.01 and p = 0.02 respectively) indicating protection against SLE (A allele, OR = 0.68, AA genotype OR = 0.51). Significant differences were also observed for c.-44C>G SNP, the C/G genotype being associated with susceptibility to SLE (OR = 1.60, p = 0.04). Moreover, statistically significant differences between patients and controls were found for two DEFB1 haplotypes (GCA and GGG, p = 0.01 and p = 0.02 respectively). When considering DEFB1 SNPs and SLE clinical and laboratory manifestations, significant association was found with neuropsychiatric disorders, immunological alterations and anti-DNA antibodies. In conclusion, our results evidence a possible role for the c.-52G>A and c.-44C>G DEFB1 polymorphisms in SLE pathogenesis, that can be considered as possible risk factors for development of disease and disease-related clinical manifestations. Additional studies are needed, to corroborate these results as well as functional studies to understand the biological role of these SNPs in the pathogenesis of SLE. Lupus (2012) 21, 625-631.
Resumo:
Abstract Background The purpose of the present study was to compare dynamic muscle strength, functional performance, fatigue, and quality of life in premenopausal systemic lupus erythematosus (SLE) patients with low disease activity versus matched-healthy controls and to determine the association of dynamic muscle strength with fatigue, functional performance, and quality of life in SLE patients. Methods We evaluated premenopausal (18–45 years) SLE patients with low disease activity (Systemic lupus erythematosus disease activity index [SLEDAI]: mean 1.5 ± 1.2). The control (n = 25) and patient (n = 25) groups were matched by age, physical characteristics, and the level of physical activities in daily life (International Physical Activity Questionnaire IPAQ). Both groups had not participated in regular exercise programs for at least six months prior to the study. Dynamic muscle strength was assessed by one-repetition maximum (1-RM) tests. Functional performance was assessed by the Timed Up and Go (TUG), in 30-s test a chair stand and arm curl using a 2-kg dumbbell and balance test, handgrip strength and a sit-and-reach flexibility test. Quality of life (SF-36) and fatigue were also measured. Results The SLE patients showed significantly lower dynamic muscle strength in all exercises (leg press 25.63%, leg extension 11.19%, leg curl 15.71%, chest press 18.33%, lat pulldown 13.56%, 1-RM total load 18.12%, P < 0.001-0.02) compared to the controls. The SLE patients also had lower functional performance, greater fatigue and poorer quality of life. In addition, fatigue, SF-36 and functional performance accounted for 52% of the variance in dynamic muscle strength in the SLE patients. Conclusions Premenopausal SLE patients with low disease activity showed lower dynamic muscle strength, along with increased fatigue, reduced functional performance, and poorer quality of life when compared to matched controls.
Resumo:
Bean golden mosaic geminivirus (BGMV) has a bipartite genome composed of two circular ssDNA components (DNA-A and DNA-B) and is transmitted by the whitefly, Bemisia tabaci. DNA-A encodes the viral replication proteins and the coat protein. To determine the role of BGMV coat protein systemic infection and whitefly transmission, two deletions and a restriction fragment inversion were introduced into the BGMV coat protein gene. All three coat protein mutants produced systemic infections when coinoculated with DNA-B onto Phaseolus vulgaris using electric discharge particle acceleration "particle gun." However, they were not sap transmissible and coat protein was not detected in mutant-infected plants. In addition, none of the mutants were transmitted by whiteflies. With all three mutants, ssDNA accumulation of DNA-A and DNA-B was reduced 25- to 50-fold and 3- to 10-fold, respectively, as compared to that of wild-type DNA. No effect on dsDNA-A accumulation was detected and there was 2- to 5-fold increase in dsDNA-B accumulation. Recombinants between the mutated DNA-A and DNA-B forms were identified when the inoculated coat protein mutant was linearized in the common region.
Resumo:
This dissertation provides a synchronic grammatical description of Mauwake, a Papuan (Trans-New Guinea) language of about 2000 speakers on the North Coast of the Madang Province in Papua New Guinea. The theoretical background is that of Basic Linguistic Theory (BLT), used extensively in analysing and writing descriptive grammars. The chapters from morphology to clause level are described from form to function; in the later chapters the function is taken more often as the starting point. Any theory-specific terminology is kept to the minimum and formalisms have been avoided in accordance with BLT principles. Mauwake has a classic 5-vowel system and 14 consonant phonemes. With its simple phonology it is a typical representative of the Madang North Coast languages. For a Papuan language there are relatively few morphophonological alternations. Nouns are either alienably or inalienably possessed. There is no obligatory number marking in nouns or noun phrases. Pronouns have several different forms: five for case and three for other functions. The dative pronouns are treated as [+human] locatives, and they have also grammaticalised as possessives. The verbal morphology is agglutinative and mainly suffixal. Unusual features include two distributive suffixes, and the interaction of the derivational benefactive and the inflectional beneficiary suffixes. The applicative suffix has either transitivising or causative but not benefactive function. The switch-reference system distinguishes between simultaneous and sequential action, as well as same or different subject in relation to the following clause. There are several verbs denoting coming and going, and they may combine with one of three prefixes to indicate bringing and taking. Mauwake is a nominative-accusative type language, and the basic constituent order in a clause is SOV. Subject and object are the only syntactic arguments. There is no indirect object, but a clause can have two or even three objects. A nominalised clause with a finite verb functions as a relative clause or a complement clause; one with a nominalised verb has several different functions. Functional domains described include modality, negation, deixis, quantification, possession and comparison. As there are four negators, Mauwake has more variation in negative expressions than is usual in Papuan languages. Clause chaining is the preferred strategy for joining clauses into sentences, but coordination and subordination of finite clauses are also common. The form of a complement clause depends on whether it is of the fact, action or potential type. Tail-head linkage is used as a cohesive device between sentences. The discourse-level features described are topic and focus.
Resumo:
Surface proteolysis is important in migration of cells through tissue barriers. In the case of prokaryotes, surface proteolysis has been associated with invasiveness of pathogenic bacteria from the primary infection site into circulation and secondary infection sites in the host. This study addressed surface proteases of two important bacterial pathogens, Yersinia pestis which is the causative agent of the lethal systemic zoonosis, plague, and Salmonella enterica serovar Typhimurium which is an oral-faecal pathogen that annually causes millions of cases of gastoenteritis that may develop to septicaemia. Both bacterial species express an ortholog of the omptin family of transmembrane β-barrel, outer membrane proteases/adhesins. This thesis work addressed the functions of isolated plasminogen activator Pla of Y. pestis and the PgtE omptin of S. enterica. Pla and PgtE were isolated as His6-fusion proteins in denaturing conditions from recombinant Escherichia coli and activated by adding lipopolysaccharide (LPS). The structural features in LPS that enhance plasminogen activation by His6-Pla were determined, and it was found that the lack of O-specifi c chain, the presence of outer core oligosaccharide, the presence of phosphates in lipid A, as well as a low level of acylation in lipid A influence the enhancement of Pla activity by LPS. A conserved lipid A phosphate binding motif in Pla and PgtE was found important for the enhancement of enzymatic activity by LPS. The results help to explain the biological signifi cance of the genetic loss of the O-specifi c chain biosynthesis in Y. pestis as well as the variations in LPS structure upon entry of Y. pestis into the human host. Expression of Pla in Y. pestis is associated with adhesiveness to lamin of basement membranes. Here, isolated and LPS-activated His6-Pla was coated onto fluorescent microparticles. The coating conferred specifi c adhesiveness of the particles to laminin and reconstituted basement membrane, thus confi rming the intrinsic adhesive characteristics of the Pla protein. The adhesiveness is thought to direct plasmin proteolysis at tissue barriers, thus increasing tissue damage and bacterial spread. Gelatinase activity has not been previously reported in enteric bacteria. Expression of PgtE in S. enterica was associated with cleavage of porcine skin gelatin, denaturated human type I collagen, as well as DQ-gelatin. Purifi ed His6-PgtE also degraded porcine skin gelatin and human type I gelatin but did not react with DQ-gelatin, indicating that minor differences are seen in proteolysis by isolated and cell-bound PgtE. Pla was less effective in gelatin degradation. The novel gelatinase activity in S. enterica is likely to enhance bacterial dissemination during infection.
Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli.
Resumo:
The type III secretion system (T3SS) encoded by the Salmonella pathogenicity island 2 (SPI2) has a central role in systemic infections by Salmonella enterica and for the intracellular phenotype. Intracellular S. enterica uses the SPI2-encoded T3SS to translocate a set of effector proteins into the host cell, which modify host cell functions, enabling intracellular survival and replication of the bacteria. We sought to determine whether specific functions of the SPI2-encoded T3SS can be transferred to heterologous hosts Salmonella bongori and Escherichia coli Mutaflor, species that lack the SPI2 locus and loci encoding effector proteins. The SPI2 virulence locus was cloned and functionally expressed in S. bongori and E. coli. Here, we demonstrate that S. bongori harboring the SPI2 locus is capable of secretion of SPI2 substrate proteins under culture conditions, as well as of translocation of effector proteins under intracellular conditions. An SPI2-mediated cellular phenotype was induced by S. bongori harboring the SPI2 if the sifA locus was cotransferred. An interference with the host cell microtubule cytoskeleton, a novel SPI2-dependent phenotype, was observed in epithelial cells infected with S. bongori harboring SPI2 without additional effector genes. S. bongori harboring SPI2 showed increased intracellular persistence in a cell culture model, but SPI2 transfer was not sufficient to confer to S. bongori systemic pathogenicity in a murine model. Transfer of SPI2 to heterologous hosts offers a new tool for the study of SPI2 functions and the phenotypes of individual effectors.
Resumo:
19 p.
Resumo:
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.
Resumo:
Previously, we reported that the alpha(1A)-adrenoceptor, but not the alpha(1D)-adrenoceptor, mediates pupillary dilation elicited by sympathetic nerve stimulation in rats. This study was undertaken to further characterize the alpha-adrenoceptor subtypes mediating pupillary dilation in response to both neural and agonist activation. Pupillary dilator response curves were generated by intravenous injection of norepinephrine in pentobarbital-anesthetized rats. Involvement of alpha(1)-adrenoceptors was established as mydriatic responses were inhibited by systemic administration of nonselective alpha-adrenoceptor antagonists, phentolamine (0.3-3 mg/kg) and phenoxybenzamine (0.03-0.3 mg/kg), as well as by the selective alpha(1)-adrenoceptor antagonist, prazosin (0.3 mg/kg). The alpha(2)-adrenoceptor antagonist, rauwolscine (0.5 mg/kg), was without antagonistic effects. alpha(1A)-Adrenoceptor selective antagonists, 2-([2,6-dimethoxyphenoxyethyl]aminomethyl)-1,4-benzodioxane (WB-4101; 0.1-1 mg/kg) and 5-methylurapidil (0.1-1 mg/kg), the alpha(1B)-adrenoceptor selective antagonist, 4-amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6,7-dimethoxyquinazoline (L-765314; 0.3-1 mg/kg), as well as the alpha(1D)-adrenoceptor selective antagonist, 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY-7378; 1 mg/kg), were used to delineate the adrenoceptor subtypes involved. Mydriatic responses to norepinephrine were significantly antagonized by intravenous administration of both WB-4101 and 5-methylurapidil, but neither by L-765314 nor by BMY-7378. L-765314 (0.3-3 mg/kg, i.v.) was also ineffective in inhibiting the mydriasis evoked by cervical sympathetic nerve stimulation. These results suggest that alpha(1B)-adrenoceptors do not mediate sympathetic mydriasis in rats, and that the alpha(1A)-adrenoceptor is the exclusive subtype mediating mydriatic responses in this species.
Resumo:
Purpose: Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway.
Methods: Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis.
Results: The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway.
Conclusions: Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.
Resumo:
Background Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes. Methods Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS–α-SMA. Results There was a significant increase in urinary H2O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes. Conclusions The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.
Resumo:
Cytokines have been shown to cause a reduction in nerve conduction when examined using animal models. Such effects, if shown in humans, could result in detrimental effects to physical function during periods heightened systemic cytokine concentrations. The study investigated the acute effects of cytokines on nerve conduction velocity (NCV) and functional measures. Measures were taken under both basal and elevated cytokine concentrations to determine any corresponding changes to NCV. A significant positive correlation was found between the cytokine IL-6 and NCV at 2 hours post-exercise (r=0.606, p=0.048). A significant negative correlation was found between IL-1ra and NCV at 24 hours post-exercise (r=-0.652, p=0.021). A significant positive correlation was also found between IL-1ra and endurance at 1 hour post-exercise (r=0.643, p=0.033). As such, it would seem that IL-6 may potentially act to enhance nerve function while other cytokines such as IL-1ra may have negative effects and reduce NCV.