943 resultados para synthetic aperture radar


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landslides are common features of the landscape of the north-central Apennine mountain range and cause frequent damage to human facilities and infrastructure. Most of these landslides move periodically with moderate velocities and, only after particular rainfall events, some accelerate abruptly. Synthetic aperture radar interferometry (InSAR) provides a particularly convenient method for studying deforming slopes. We use standard two-pass interferometry, taking advantage of the short revisit time of the Sentinel-1 satellites. In this paper we present the results of the InSAR analysis developed on several study areas in central and Northern Italian Apennines. The aims of the work described within the articles contained in this paper, concern: i) the potential of the standard two-pass interferometric technique for the recognition of active landslides; ii) the exploration of the potential related to the displacement time series resulting from a two-pass multiple time-scale InSAR analysis; iii) the evaluation of the possibility of making comparisons with climate forcing for cognitive and risk assessment purposes. Our analysis successfully identified more than 400 InSAR deformation signals (IDS) in the different study areas corresponding to active slope movements. The comparison between IDSs and thematic maps allowed us to identify the main characteristics of the slopes most prone to landslides. The analysis of displacement time series derived from monthly interferometric stacks or single 6-day interferograms allowed the establishment of landslide activity thresholds. This information, combined with the displacement time series, allowed the relationship between ground deformation and climate forcing to be successfully investigated. The InSAR data also gave access to the possibility of validating geographical warning systems and comparing the activity state of landslides with triggering probability thresholds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For ground penetrating radar (GPR), smaller antennas would provide considerable practical advantages. Some of which are: portability; ease of use; and higher spatial sampling. A theoretical comparison of the fundamental limits of a small electric field antenna and a small magnetic field antenna shows that the minimum Q constraints are identical. Furthermore, it is shown that only the small magnetic loop antenna can be constructed to approach, arbitrarily closely, the fundamental minimum Q limit. This is achieved with the addition of a high permeability material which reduces energy stored in the magnetic fields. This is of special interest to some GPR applications. For example, applications requiring synthetic aperture data collection would benefit from the increased spatial sampling offered by electrically smaller antennas. Low frequency applications may also benefit, in terms of reduced antenna dimensions, by the use of electrically small antennas. Under these circumstances, a magnetic type antenna should be considered in preference to the typical electric field antenna. Numerical modeling data supports this assertion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Compared to synthetic aperture radars (SARs), the angular resolution of microwave radiometers is quite poor. Traditionally, it has been limited by the physical size of the antenna. However, the angular resolution can be improved by means of aperture synthesis interferometric techniques. A narrow beam is synthesized during the image formation processing of the cross-correlations measured at zero-lag between pairs of signals collected by an array of antennas. The angular resolution is then determined by the maximum antenna spacing normalized to the wavelength (baseline). The next step in improving the angular resolution is the Doppler-Radiometer, somehow related to the super-synthesis radiometers and the Radiometer-SAR. This paper presents the concept of a three-antenna Doppler-Radiometer for 2D imaging. The performance of this instrument is evaluated in terms of angular/spatial resolution and radiometric sensitivity, and an L-band illustrative example is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synthetic Aperture Radar’s (SAR) are systems designed in the early 50’s that are capable of obtaining images of the ground using electromagnetic signals. Thus, its activity is not interrupted by adverse meteorological conditions or during the night, as it occurs in optical systems. The name of the system comes from the creation of a synthetic aperture, larger than the real one, by moving the platform that carries the radar (typically a plane or a satellite). It provides the same resolution as a static radar equipped with a larger antenna. As it moves, the radar keeps emitting pulses every 1/PRF seconds —the PRF is the pulse repetition frequency—, whose echoes are stored and processed to obtain the image of the ground. To carry out this process, the algorithm needs to make the assumption that the targets in the illuminated scene are not moving. If that is the case, the algorithm is able to extract a focused image from the signal. However, if the targets are moving, they get unfocused and/or shifted from their position in the final image. There are applications in which it is especially useful to have information about moving targets (military, rescue tasks,studyoftheflowsofwater,surveillanceofmaritimeroutes...).Thisfeatureiscalled Ground Moving Target Indicator (GMTI). That is why the study and the development of techniques capable of detecting these targets and placing them correctly in the scene is convenient. In this document, some of the principal GMTI algorithms used in SAR systems are detailed. A simulator has been created to test the features of each implemented algorithm on a general situation with moving targets. Finally Monte Carlo tests have been performed, allowing us to extract conclusions and statistics of each algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yhteiskunnan eri toimijoiden riippuvuus avaruustoiminnasta on kasvamassa. Satelliittien paikka- ja aikatietojen lisäksi satelliittien valvontakyvyn hyödyntäminen on lisääntymässä. Merivoimat on mukana kansainvälisissä merivalvontahankkeissa, muun muassa Euroopan puolustusviraston johtamassa Maritime Surveillance -hankkeessa, jossa hyödynnetään satelliittien valvontakykyä merialueiden valvonnassa. Tämä tutkimuksen tavoitteena on selvittää miten SAR (Synthetic Aperature Radar) -satelliitteja voidaan hyödyntää merivalvonnassa ja mitkä ovat merivalvonnan tietotarpeet sekä SAR-aineistojen saatavuus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose an elevation-dependent calibratory method to correct for the water vapour-induced delays over Mt. Etna that affect the interferometric syntheric aperture radar (InSAR) results. Water vapour delay fields are modelled from individual zenith delay estimates on a network of continuous GPS receivers. These are interpolated using simple kriging with varying local means over two domains, above and below 2 km in altitude. Test results with data from a meteorological station and 14 continuous GPS stations over Mt. Etna show that a reduction of the mean phase delay field of about 27% is achieved after the model is applied to a 35-day interferogram. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes an image compounding technique based on the use of different apodization functions, the evaluation of the signals phases and information from the interaction of different propagation modes of Lamb waves with defects for enhanced damage detection, resolution and contrast. A 16 elements linear array is attached to a 1 mm thickness isotropic aluminum plate with artificial defects. The array can excite the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two synthetic aperture (SA) images with uniform and Blackman apodization and one image of Coherence Factor Map (CFM) are obtained. The specific interaction between each propagation mode and the defects and the characteristics of acoustic radiation patterns due to different apodization functions result in images with different resolution and contrast. From the phase information one of the SA images is selected at each pixel to compound the final image. The SA images are multiplied by the CFM image to improve contrast and for the dispersive A0 mode it is used a technique for dispersion compensation. There is a contrast improvement of 47.5 dB, reducing the dead zone and improving resolution and damage detection. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Piezoelectric array transducers applications are becoming usual in the ultrasonic non-destructive testing area. However, the number of elements can increase the system complexity, due to the necessity of multichannel circuitry and to the large amount of data to be processed. Synthetic aperture techniques, where one or few transmission and reception channels are necessary, and the data are post-processed, can be used to reduce the system complexity. Another possibility is to use sparse arrays instead of a full-populated array. In sparse arrays, there is a smaller number of elements and the interelement spacing is larger than half wavelength. In this work, results of ultrasonic inspection of an aluminum plate with artificial defects using guided acoustic waves and sparse arrays are presented. Synthetic aperture techniques are used to obtain a set of images that are then processed with an image compounding technique, which was previously evaluated only with full-populated arrays, in order to increase the resolution and contrast of the images. The results with sparse arrays are equivalent to the ones obtained with full-populated arrays in terms of resolution. Although there is an 8 dB contrast reduction when using sparse arrays, defect detection is preserved and there is the advantage of a reduction in the number of transducer elements and data volume. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As our input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We include a novel approach to resample the input into regularly sampled 3D light fields by aligning them in the spatio-temporal domain, and a technique for high-quality disparity estimation from light fields. We show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.