980 resultados para surface moisture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In July and August 2010 floods of unprecedented impact afflicted Pakistan. The floods resulted from a series of intense multi-day precipitation events in July and early August. At the same time a series of blocking anticyclones dominated the upper-level flow over western Russia and breaking waves i.e. equatorward extrusions of stratospheric high potential vorticity (PV) air formed along the downstream flank of the blocks. Previous studies suggested that these extratropical upper-level breaking waves were crucial for instigating the precipitation events in Pakistan. Here a detailed analysis is provided of the extratropical forcing of the precipitation. Piecewise PV inversion is used to quantify the extratropical upper-level forcing associated with the wave breaking and trajectories are calculated to study the pathways and source regions of the moisture that precipitated over Pakistan. Limited-area model simulations are carried out to complement the Lagrangian analysis. The precipitation events over Pakistan resulted from a combination of favourable boundary conditions with strong extratropical and monsoonal forcing factors. Above-normal sea-surface temperatures in the Indian Ocean led to an elevated lower-tropospheric moisture content. Surface monsoonal depressions ensured the transport of moist air from the ocean towards northeastern Pakistan. Along this pathway the air parcel humidity increased substantially (60–90% of precipitated moisture) via evapotranspiration from the land surface. Extratropical breaking waves influenced the surface wind field substantially by enhancing the wind component directed towards the mountains which reinforced the precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skinned portions of baseball and softball infields vary widely with respect to soil texture, applied amendments and conditioners, and water management. No studies have been reported that quantify the effects of these varying construction and maintenance practices on the playability of the skinned portions of infields. In Connecticut, USA, skinned infield plots were constructed from five different soils (silt loam, loam, coarse sandy loam, loamy sand, loamy coarse sand) and amended with four rates of calcined clay (0, 4.9, 9.8, 19.6 kg m–2) to determine the effects on surface hardness, traction, and ball-to-surface friction (static and dynamic) at varying soil moisture contents (10, 14, and 18%). Bulk density, saturated hydraulic conductivity, and shear strength of the different soil–calcined clay rate combinations were determined. Increasing the rate of calcined clay decreased bulk density and shear strengths, and increased saturated hydraulic conductivity. Surface hardness increased more with coarse-textured soils and increasing calcined clay rate, but decreased more with fine-textured soils and increasing soil moisture. Increasing the calcined clay rate resulted in decreases in ball-to-surface static friction across all soils and decreased dynamic friction with the fine-textured soils. Increases in soil moisture increased friction in all soils. The fine-textured soils had greater traction than the sandy soils, but no consistent calcined clay or moisture effects on traction were observed. Shear strength of the soils was highly correlated with traction and friction. The results suggest that differences in skinned infield soils are quantifiable, which could lead to the development of playing surface standards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this research were (1) to study the effect of contact pressure, compression time, and liquid (moisture content of the fabric) on the transfer by sliding contact of non-fixed surface contamination to protective clothing constructed from uncoated, woven fabrics, (2) to study the effect of contact pressure, compression time, and liquid content on the subsequent penetration through the fabric, and (3) to determine if varying the type of contaminant changes the effect of contact pressure, compression time, and liquid content on the transfer by sliding contact and penetration of non-fixed surface contamination. ^ It was found that the combined influence of the liquid (moisture content of the fabric), load (contact pressure), compression time, and their interactions significantly influenced the penetration of all three test agents, sucrose- 14C, triolein-3H, and starch-14C through 100% cotton fabric. The combined influence of the statistically significant main effects and their interactions increased the penetration of triolein- 3H by 32,548%, sucrose-14C by 7,006%, and starch- 14C by 1,900%. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-frequency suborbital variations (Dansgaard-Oeschger cycles) characterize the climatic history of the Northern Hemisphere as observed in Greenland ice cores, deep-sea sediments of the North Atlantic, the Californian borderland, the Arabian Sea, the South China Sea, and the Chinese loess area. Paleoceanographic data from core KL126 from the Bay of Bengal in combination with data from the other Asian monsoonal areas indicate that the feedback processes involving snow and dust of the Tibetan Plateau vary the summer monsoon capacity to transport moisture into central South Asia and into the atmosphere. We postulate that the summer monsoon initiates, amplifies, and terminates these cycles in the Northern Hemisphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based upon high-resolution thermal-infrared Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derived long-term polynya parameters such as polynya area, thin-ice thickness distribution and ice-production rates from daily cloud-cover corrected thin-ice thickness composites. Our study is based on a thirteen year investigation period (2002-2014) for the austral winter (1 April to 30 September) in the Antarctic Southern Weddell Sea. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of Ronne and Brunt Ice Shelf to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km**3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km**2 and 4 ± 3 km**3 (Antarctic Peninsula), 1148 ± 432 km**2 and 12 ± 5 km**3 (Iceberg A23A), 901 ± 703 km**2 and 10 ± 8 km**3 (Filchner Ice Shelf) as well as 499 ± 277 km**2 and 5 ± 2 km**3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the Southern Weddell Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation (Kutzbach and Liu, 1997, doi:10.1126/science.278.5337.440; Partridge et al., 1997, doi:10.1016/S0277-3791(97)00005-X). Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt (Hastenrath, 1990, doi:10.1002/joc.3370100504, Street-Perrott and Perrott, 1990, doi:10.1038/343607a0). Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited (Gasse, 2000, doi:10.1016/S0277-3791(99)00061-X). Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground surface temperature is one of the key parameters that determine the thermal regime of permafrost soils in arctic regions. Due to remoteness of most permafrost areas, monitoring of the land surface temperature (LST) through remote sensing is desirable. However, suitable satellite platforms such as MODIS provide spatial resolutions, that cannot resolve the considerable small-scale heterogeneity of the surface conditions characteristic for many permafrost areas. This study investigates the spatial variability of summer surface temperatures of high-arctic tundra on Svalbard, Norway. A thermal imaging system mounted on a mast facilitates continuous monitoring of approximately 100 x 100 m of tundra with a wide variability of different surface covers and soil moisture conditions over the entire summer season from the snow melt until fall. The net radiation is found to be a control parameter for the differences in surface temperature between wet and dry areas. Under clear-sky conditions in July, the differences in surface temperature between wet and dry areas reach up to 10K. The spatial differences reduce strongly in weekly averages of the surface temperature, which are relevant for the soil temperature evolution of deeper layers. Nevertheless, a considerable variability remains, with maximum differences between wet and dry areas of 3 to 4K. Furthermore, the pattern of snow patches and snow-free areas during snow melt in July causes even greater differences of more than 10K in the weekly averages. Towards the end of the summer season, the differences in surface temperature gradually diminish. Due to the pronounced spatial variability in July, the accumulated degree-day totals of the snow-free period can differ by more than 60% throughout the study area. The terrestrial observations from the thermal imaging system are compared to measurements of the land surface temperature from the MODIS sensor. During periods with frequent clear-sky conditions and thus a high density of satellite data, weekly averages calculated from the thermal imaging system and from MODIS LST agree within less than 2K. Larger deviations occur when prolonged cloudy periods prevent satellite measurements. Futhermore, the employed MODIS L2 LST data set contains a number of strongly biased measurements, which suggest an admixing of cloud top temperatures. We conclude that a reliable gap filling procedure to moderate the impact of prolonged cloudy periods would be of high value for a future LST-based permafrost monitoring scheme. The occurrence of sustained subpixel variability of the summer surface temperature is a complicating factor, whose impact needs to be assessed further in conjunction with other spatially variable parameters such as the snow cover and soil properties.